
1

Frauke Paetsch
Fachhochschule Mannheim

frauke.paetsch@web.de

Dr. Armin Eberlein
University of Calgary

eberlein@enel.ucalgary.ca

Dr. Frank Maurer
University of Calgary

maurer@cpsc.ucalgary.ca

Abstract
This article compares traditional requirements engineering
approaches and agile software development. Our paper
analyzes commonalities and differences of both approaches
and determines possible ways how agile software development
can benefit from requirements engineering methods.

Index Terms Requirements Engineering, Agile Development

1 Introduction

Agile software development approaches have become more
popular during the last few years. Several methods have been
developed with the aim to be able to deliver software faster
and to ensure that the software meets customer changing
needs. All these approaches share some common principles:
Improved customer satisfaction, adopting to changing
requirements, frequently delivering working software, and
close collaboration of business people and developers.

Requirements engineering, on the other hand, is a traditional
software engineering process with the goal to identify, analyze,
document and validate requirements for the system to be
developed. Often, requirements engineering and agile
approaches are seen being incompati8ble: RE is often heavily
relying on documentation for knowledge sharing while agile
methods are focusing on face-to-face collaboration between
customers and developers to reach similar goals. The aim of
this article is to find out if some requirements engineering
techniques can be used within agile development and if this
could result in improvements to agile approaches.

The next section briefly gives an overview on current
requirements engineering approaches. Section 3 discusses
agile approaches from a requirements engineering perspective.
In Section 4, we evaluate how the incorporation of some
requirements engineering techniques could improve agile
methods. The last section summarizes our results.

2 Requirements Engineering
Requirements engineering is concerned with identifying,
modeling, communicating and documenting the requirements
for a system, and the contexts in which the system will be
used. Requirements describe what is to be done but not how

they are implemented [6]. There are many techniques available
for use during the RE process to ensure that the requirements
are complete, consistent and relevant. The aim of RE is to help
to know what to build before system development starts in
order to prevent costly rework. This goal is based on two
major assumptions:
• The later mistakes are discovered the more expensive it

will be to correct them [3].
• It is possible to determine a stable set of requirements

before system design and implementation starts.
The RE process consists of five main activities [2]:

Elicitation, Analysis and Negotiation, Documentation,
Validation, and Management. In the following, we will briefly
examine each of these and discuss techniques that were
developed for them.

2.1 Requirements Elicitation
Requirements elicitation tries to discover requirements and
identify system boundaries by consulting stakeholders (e.g.,
clients, developers, users). System boundaries define the
context of the system. Understanding the application domain,
business needs, system constraints, stakeholders and the
problem itself is essential to gain an understanding of the
system to be developed.

The most important techniques for requirements elicitation
are described in the remainder of this section.

Interviews Interviewing is a method for discovering facts
and opinions held by potential users and other stakeholders of
the system under development. Mistakes and
misunderstandings can be identified and cleared up. There are
two different kinds of interviews:
• the closed interview, where the requirements engineer has

a pre-defined set of questions and is looking for answers
• the open interview, without any pre-defined questions the

requirements engineer and stakeholders discuss in an
open-ended way what they expect from a system.

In fact, there is no distinct boundary between both kinds of
interviews. You start with some questions which are discussed
and lead to new questions [2]. The advantage of interviews is
that they help the developer to get a rich collection of
information. Their disadvantage is that this amount of
qualitative data can be hard to analyze and different
stakeholders may provide conflicting information.

Requirements Engineering and
Agile Software Development

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

2

Use cases / Scenarios Use cases describe interactions
between users and the system, focusing on what users need to
do with the system. A use case specifies a sequence of
interaction between a system and an external actor (e.g., a
person, a piece of hardware, another software product),
including variants and extensions, that the system can perform.
Use cases represent functional requirements of the software
system and can be used during the early stages in the
development process. Analysts and customers should examine
every use case proposed to validate it.

Scenarios are examples of interaction sessions where a
single type of interaction between user and system is
simulated. Scenarios should include a description of the state
of the system before entering and after completion of the
scenario, what activities might be simultaneous, the normal
flow of events and exceptions to the events [2].

Observation and social analysis Observational methods
involve an investigator viewing users as they work and taking
notes on the activity that takes place. Observation may be
either direct with the investigator being present during the task,
or indirect, where the task is viewed by some other means (e.g.
recorded video). It is useful for studying currently executed
tasks and processes. Observation allows the observer to view
what users actually do in context - overcoming issues with
stakeholders describing idealized or oversimplified work
processes.

Focus Groups Focus groups are an informal technique
where a group of four to nine users from different backgrounds
and with different skills discuss in a free form issues and
concerns about features of a system prototype. Focus groups
help to identify user needs and perceptions, what things are
important to them and what they want from the system. They
often bring out spontaneous reactions and ideas. Since there is
often a major difference between what people say and what
they do, observations should complement focus groups.

Focus groups can support the articulation of visions, design
proposals and a product concept. Additionally, they help users
in analyzing things that should be changed, and support the
development of a ’shared meaning’ of the system [1].

Brainstorming Brainstorming helps to develop creative
solutions for specific problems. Brainstorming contains two
phases - the generation phase, where ideas are collected, and
the evaluation phase, where the collected ideas are discussed.
In the generation phase, ideas shouldn’t be criticized or
evaluated. The ideas should be developed fast and be broad
and odd. Brainstorming leads to a better problem under-
standing and a feeling of common ownership of the result.

Prototyping A prototype of a system is an initial version of
the system which is available early in the development
process. Prototypes of software systems are often used to help
elicit and validate system requirements. There are two
different types of prototypes: Throw-away prototypes help to
understand difficult requirements. Evolutionary prototypes
deliver a workable system to the customer and often become a
part of the final system. Prototypes can be paper based (where

a mock-up of the system is developed on paper), ”Wizard of
Oz” prototypes (where a person simulates the responses of the
system in response to some user inputs) or automated
prototypes (where a rapid development environment is used to
develop an executable prototype).

2.2 Requirements Analysis
Requirements Analysis checks requirements for necessity (the
need for the requirement), consistency (requirements should
not be contradictory), completeness (no service or constraint is
missing), and feasibility (requirements are feasible in the
context of the budget and schedule available for the system
development). Conflicts in requirements are resolved through
prioritization negotiation with stakeholders. Disputed
requirements are prioritized to identify critical requirements.
Solutions to requirements problems are identified and a
compromise set of requirements is agreed upon. The main
techniques used for requirements analysis are JAD sessions,
Prioritization, and Modeling.

Joint Application Development (JAD) is a facilitated
group session (or workshop) with a structured analysis
approach. During the JAD sessions developers and customers
discuss desired product features. This kind of discussion can
be very productive if the session leader prevents the
participants from ’running out of course’. The purpose of JAD
is to define a special project on various levels of details, to
design a solution, and to monitor the project until it’s
completed. Participants include executives, project managers,
users, system experts and external technical personnel [1].
JAD promotes cooperation, understanding and teamwork
among the different groups of participants. As participants
should come from different backgrounds, information
considering various parts of the new system can be gathered
and provide a base for further requirements elicitation.

Requirements Prioritization On a project with a tight
schedule, limited resources, and high customer expectations it
is essential to deliver the most valuable features as early as
possible. Setting priorities early in the project helps to decide
which features to skip under time pressure. Requirements
prioritization should be done by the customer. Both customer
and developer have to provide input to requirements
prioritization. The customer marks features providing the
greatest benefit to users with the highest priority. Developers
point out the technical risks, costs, or difficulties. Based on
this information, the customer might change the priority of
some features. Developers also might propose to implement a
feature having a higher impact on the system’s architecture but
with lower priority earlier [13]. Various prioritization
techniques (like pair-wise comparison or the Analytic
Hierarchy Process) were developed.

Modeling System models are an important bridge between
the analysis and the design process. A number of methods use
different modeling techniques to describe system requirements.
The most popular modeling techniques are [2]: data-flow
models, semantic data models and object-oriented approaches.

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

3

2.3 Requirements Documentation
The purpose of requirements documentation is to communicate
requirements between stakeholders and developers. The
requirements document is the baseline for evaluating
subsequent products and processes (design, testing,
verification and validation activities) and for change control.

A good requirements document is unambiguous, complete,
correct, understandable, consistent, concise, and feasible.
Depending on the customer-supplier relationship, the
requirements specification can be part of the contract.

2.4 Requirements Validation
The purpose of requirements validation is to certify that the
requirements are an acceptable description of the system to be
implemented. Inputs for the validation process are the
requirements document, organizational standards, and
organizational knowledge. The outputs are a list that contains
the reported problems with the requirements document and the
actions necessary to cope with the reported problems.
Techniques used for requirements validation are requirements
reviews and requirements testing. Requirements validation
usually results in sing-offs from all project stakeholders.

2.5 Requirements Management
The goal of requirements management is to capture, store,
disseminate, and manage information. Requirements manage-
ment includes all activities concerned with change & version
control, requirements tracing, and requirements status tracking.
Requirements traceability provides relationships between
requirements, design, and implementation of a system in order
to manage changes to a system.

3 Agile Development Methods
In comparison to traditional software processes, agile
development is less document-centric and more code-oriented.
This, however, is not the key point but rather a symptom of
two deeper differences between both [10]:
• Agile methods are adaptive rather than predictive. With

traditional methods, most of the software process is
planned in detail for a large time frame. This works well if
not much is changing (i.e. low requirements churn) and
the application domain and software technologies are well
understood by the development team. Agile methods were
developed to adapt and thrive on frequent changes.

• Agile methods are people-oriented rather than process-
oriented. They rely on people’s expertise, competency and
direct collaboration rather than on rigorous, document-
centric processes to produce high-quality software.

In this section, the most common agile methods are briefly
discussed.

Extreme Programming (XP) is based on values of
simplicity, communication, feedback, and courage [3]. It
works by bringing the whole team together in the presence of
simple practices, with enough feedback to enable the team to
see where they are. XP combines old, tried and tested

techniques in such a way that they reinforce each other.
XP does not explicitly talk about requirements techniques in

detail but about the general software development process and
what is to be done during the process. Several XP practices (or
techniques used in these practices) can be compared with
slightly modified RE techniques. Specifically, during the
Planning Game, elicitation techniques like interviews,
brainstorming and prioritization are used. XP uses story cards
for elicitation. A user story is a description of a feature that
provides business value to the customer. Use cases, on the
other hand, are a description of interactions of the system and
its users and do not mandatory have to provide business value.

Before story cards can be written, customers have to think
about what they expect the system to do. This process can be
seen as brainstorming. Thinking about a specific functionality
leads to more ideas and to more user stories. Every story is
discussed in an open-ended way before implementation.
Initially, developers ask for enough details to be able to
estimate the effort for implementing the story. Based on these
estimates and the time available, customers prioritize stories to
be addressed in the next iteration. XP emphasizes writing tests
before coding. Acceptance tests are defined by the customer
and are used to validate the completion of a story card. XP is
based on frequent small releases. This can be compared with
requirements review and with evolutionary prototyping. The
difference between XP and prototyping is, that XP requires a
tested, cleanly designed code while prototypes can be ’hacked
together’. Customers can review and test the functionality and
design of the delivered program and discuss issues they want
to be changed or added in the next release.

Agile Modeling (AM) The basic idea of AM [4] is to give
developers a guideline of how to build models that resolve
design problems but not ’over-build’ these models. Like XP,
AM points out that changes are normal in software
development. AM does not explicitly refer to any RE
techniques but some of the practices support several RE
techniques (e.g. tests and brainstorming). AM highlights the
difference between informal models whose sole purpose is to
support face-to-face communication and models that are
preserved and maintained as part of the system documentation.
The later are what is often found in RE approaches.

Scrum is a method for managing the system development
process by applying ideas on flexibility, adaptability and
productivity from industrial process control theory. Scrum
focuses on how a team should work together to produce
quality work in a changing environment [11, 7].

The main Scrum techniques are the product backlog, sprints,
and daily scrums. With regard to Requirements Engineering
the product backlog plays a special role in Scrum. All
requirements regarded as necessary or useful for the product
are listed in the product backlog. It contains a prioritized list of
all features, functions, enhancements, and bugs. The product
backlog can be compared with an incomplete and changing (a
kind of: living) requirements document containing information
needed for development. For each sprint (= 30 day

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

4

development iteration), the highest priority tasks from the
backlog are moved to the sprint backlog. No changes are
allowed to the sprint backlog during the sprint. I.e. there is no
flexibility in the requirements to be fulfilled during a sprint but
there is absolute flexibility for the customer reprioritizing the
requirements for the next sprint. At the end of a Sprint a sprint
review meeting is held that demonstrates the new functionality
to the customer and solicits feedback.

The knowledge gathered in the sprint review meeting and
the current product backlog is used in the next sprint planning
meeting. The sprint review meeting can be compared to
requirements review and a presentation of an evolutionary
prototype to the customer.

The Crystal Methodologies The Crystal Methodologies
are a family of different methodologies from which the
appropriate methodologies can be chosen for each project. The
different members of the family can be tailored to fit varying
circumstances. The members of the Crystal family are indexed
by different colors to indicate the ”heaviness”: Clear, Yellow,
Orange, Red, Magenta, Blue, Violet [8]. Up to now three
Crystal methodologies have been used. These are Clear,
Orange, and Orange Web. The difference between Orange and
Orange Web is that Orange Web does not deal with a single
project. Some Crystal Clear and Orange policy standards can
be compared with RE techniques [11]:
• Incremental time-boxed delivery (Prototyping, Reviews)
• Automated regression testing of functionality (Testing)
• Two user viewings per release (Review)
• Workshops for product- and methodology-tuning at the

beginning and in the middle of each increment (Review)
Feature Driven Development (FDD) FDD is a short-

iteration process for software development focusing on the
design and building phase instead of covering the entire
software development process [11]. In the first phase, the
overall domain model is developed by domain experts and
developers. The overall model consists of class diagrams with
classes, relationships, methods, and attributes. The methods
express functionality and are the base for building a feature
list. A feature in FDD is a client-valued function. The features
of the feature list are prioritized by the team. The feature list is
reviewed by domain members [12]. FDD proposes a weekly
30-minute meeting in which the status of the features is
discussed and a report about the meeting is written. Reporting
can roughly be compared with requirements tracking.

Dynamic Systems Development Method (DSDM)
provides a framework for rapid application development [9].
The first two phases of DSDM are the feasibility study and the
business study. During these two phases the base requirements
are elicited. Further requirements are elicited during the
development process. DSDM does not insist on certain
techniques. Thus, any RE technique can be used during the
development process. In DSDM, testing is integrated
throughout the lifecycle. The philosophy of DSDM is ’test as
you go’ [9]. All sorts of testing (technical, functional) are
carried out incrementally by the developer and the users on the

team. DSDM explicitly highlights the use of JAD sessions and
emphasizes prototyping [9].

Adaptive Software Development (ASD) provides an
framework for the iterative development of large, complex
systems. The method encourages incremental, iterative
development with constant prototyping [5]. ASD highlights
that a sequential waterfall approach only works in well-
understood and well-defined environments. But as changes
occur frequently in software development, it is important to
use a change-tolerant method. The first cycles of an ASD
project should be short, ensure that the customer is strongly
involved and confirm the project’s viability. Each cycle ends
with a customer focus group review. During the review
meetings a working application is explored. The results of the
meetings are documented change requests. Although ASD
explicitly refers to JAD sessions it does not propose schedules
for holding JAD sessions.

4 RE techniques for agile approaches
In the previous section, we gave an overview on requirements
engineering techniques as well as on agile methods. Here, we
now analyze potential synergies between these approaches.
Customer involvement The CHAOS report [14] showed the
critical importance of customer involvement. Customer
involvement was found to be the number one reason for
project success, while the lack of user involvement was the
main reason given for projects that ran into difficulties. A key
point in all agile approaches is to have the customer
’accessible’ or ’on-site’. Thus, traditional RE and agile
methods agree on the importance of stakeholder involvement.

Agile methods often assume an “ideal” customer
representative: the representative can answer all developer
questions correctly, she is empowered to make binding
decisions and able to make the right decisions. Even if the
requirements are elicited in group sessions (DSDM, Scrum) it
is not guaranteed that users or customers with all necessary
backgrounds are present. On the other hand, RE has a less
idealized picture of stakeholder involvement. The different
elicitation techniques aim to get as much knowledge as
possible from all stakeholders and resolve inconsistencies. In
addition, RE uses externalization and reviews to ensure that all
requirements are known and conflicting requirements are in
the open

Another difference between traditional approaches and agile
methods is that in traditional approaches the customer is
mainly involved during the early phase of the project while
agile methods involve the customer throughout the whole
development process.
Interviews As customer involvement is a primary goal of agile
software development, the most common RE-related technique
are interviews. Interviews provide direct and ’unfiltered’
access to the needed knowledge. It is known that chains of
knowledge transfer lead to misunderstandings. All agile
approaches emphasize that talking to the customer is the best
way to get information needed for development and to avoid
misunderstandings. If anything is not clear or only vaguely

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

5

defined, team members should talk to the responsible person
and avoid chains of knowledge transfer. Direct interaction also
helps establishing trust relationships between customers and
developers.
Prioritization is found in all the agile approaches. A common
practice is to implement the highest priority features first to be
able to deliver the most business value. During development,
the understanding of the project increases and new
requirements are added. To keep priorities up-to-date,
prioritization is repeated frequently during the whole
development process.
JAD sessions are used in ASD to increase customer
involvement. In DSDM, JAD sessions are used to gain
understanding of the new system at the beginning of a project.
Focusing the interaction to short JAD sessions does not bind
the customer representative as much as the on-site customer in
XP. The results of the sessions are usually documented and
accessible if further questions arise later. The documentation
requirement should be relaxed in an agile context. To have
constant feedback, JAD sessions should be held frequently
during the development process. JAD sessions encourage
customer involvement and trust in each other. This is clearly in
line with agile principles.
Modeling Although modeling is used in AM, the purpose is
different when compared with RE. In AM, models are used to
communicate understanding of a small part of the system
under development. These models are mostly throw-away
models. They are drawn on a whiteboard or paper and erased
after fulfilling their purpose. Most of the models do not
become part of the persistent documentation of the system. In
RE, models on different levels of abstraction are used. All
these models normally become part of the system
documentation and need to be kept up to date. The purpose of
modeling in FDD is similar to RE: The developed model
represents the whole system and development is based on this
model. But as the design and build phase are iterative, models
are quickly translated into running code.
Documentation In agile software development, creating
complete and consistent requirements documents is seen as
infeasible or, at least, as not cost effective. Some agile
methods include a kind of documentation or recommend the
use of a requirements document (DSDM, Scrum, Crystal) but
the decision on its extend is left to the development team and
not described in detail. The assumption is that the documents
are much smaller than in traditional approaches. The lack of
documentation might cause long-term problems for agile
teams. Documentation is used for sharing knowledge between
people: a new team member will have many questions
regarding the project. These can be answered by other team
members or by reading and understanding “good”
documentation. Asking other team members will slow down
work because it takes some time to explain a complex project
to someone. Documentation reduces knowledge loss when
team members become unavailable (e.g. they moved to another
company or are working on a new project). This is particular
an issue when software needs to be maintained in the long run.

Long term problems might be limited as agile methods often
produce clean and compact code. Additionally, customers
often ask the agile team to produce design documentation
before the team is resolved when the system moves to a pure
production environment. The scope of the documentation is
often very limited and focuses on the core aspects of the
system. This increases the chances that the documentation can
be kept up to date when the software is changed. On the other
hand, agile methods should be more productive than
traditional approaches as they spend less time on producing
documentation than traditional RE approaches.

Traditional approaches try to produce enough documentation
to be able to answer all questions that might be asked in the
future. To be able to do so, they need to (1) anticipate future
questions and (2) answer them in a concise and understandable
manner. Both things are difficult – this is why writing good
requirements documents is so hard. Usually, to get a good
coverage of future questions, traditional approaches might
produce too much documentation (i.e. answering questions
that will in fact never be asked and wasting money on writing
the answers). As a side effect of comprehensive
documentation, it becomes difficult to keep all documents up-
to-date and to find the relevant information for answering a
question. Some advantages or disadvantages of documentation
are related to team size. With a big team, it might be better to
have documentation instead of explaining the same thing many
times to different people. To summarize, agile methods tend to
err on the side of producing not enough documentation while
traditional approaches tend to overdocument.
Validation Agile approaches use frequent review meetings
and acceptance tests for requirements validation. Review
meetings show that the project is in target and schedule
increasing customer trust & confidence in the team or
highlighting problems very early. Agile approaches use
different kinds of review meetings to present the new software.
Customers can use the software, experience how the system
works and determine which functionality has already been
implemented. If they have questions, these can be immediately
answered by the developers. Customers can also discuss the
implementation with developers and ask for changes in design.
During the review meetings, they learn about strength and
weakness of the design and the technology and in which areas
there are advantages and limitations. Customers can also run
acceptance test to validate if the system reacts in the expected
way and, if not, clarify the issue. The questions and change
requests influence future development. Depending on the
method and project circumstances, the software is put into
production after each review. This fast deployment changes
the economics of the software project by providing a faster
return on investment. Agile development is comparable to
evolutionary prototyping: both are based on delivering
frequently a piece of working code to enhance feedback. The
difference lies in the strong emphasis on testing in agile
approaches.
Management From the RE view, it should be possible to track

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

6

changes made to requirements, design, or documentation to
see why any changes were made. Creating traceability results
in more work and additional documentation. Additionally, it
has not yet been shown that change tracking provides any
economic benefit for a project. The lack of documentation
could be critical if the requirements form a legal contract
between two organizations. That is one reason why agile
project contracts often are based on time and expenses and not
on fixed price/fixed scope. Contracts based on fixed
price/fixed scope create trust by defining what the customer
will get, for what price and in which time. Agile approaches
create trust by tightly integrating the customer into the
development process. The customer sees that the development
team is working on the software and believes that the team will
deliver working software that will meet his needs.

Agile methods provide a good base for requirements
management. All the requirements are written on index cards
or maintained in a product backlog/feature list. The difference
is the level of detail in which a requirement/user story/feature
is described: agile practices usually omit the details postpone
the expenses for gathering the details until the requirement
needs to be fulfilled in the next iteration. One can call this lazy
requirements elicitation.

DSDM discusses change tracking. When parts of the
business study have to be repeated, the changes can be
documented in a separate document. The product backlog in
Scrum could be used to version requirements changes. Instead
of deleting old versions, they could be kept and refer to the
new requirement with a note why they were deleted/changed.
Observation and Social Analysis, Brainstorming These
techniques are not explicitly mentioned in any agile software
development method but can be used with any approach.
Especially, observation methods can provide benefit in
requirements elicitation as a highly qualified ’user’ is not
always the best person to talk about her work process a they
sometimes forget important details as the work has become
routine. These details can be discovered by observation.
Non-functional requirements In agile approaches handling of
non-functional requirements is ill defined. Customers or users
talking about what they want the system to do normally do not
think about resources, maintainability, portability, safety or
performance. Some requirements concerning user interface or
safety can be elicited during the development process and still
be integrated. But most non-functional requirements should be
known in development because they can affect the choice of
database, programming language or operating system. Agile
methods need to include more explicitly the handling of non-
functional requirements.

5 Conclusion
The RE process phases elicitation, analysis, and validation

are present in all agile processes. The techniques used vary in
the different approaches and the phases are not as clearly
separated as in the RE process - they merge in some ways (the
Planning Game in XP is an elicitation and analysis approach).

They are also repeated in each iteration - which makes it
harder to distinguish between the phases. The lazy approach to
requirements engineering might have cost advantages as it
postpones the effort/expenses for gathering requirement details
until the last minute: just before the requirement is
implemented, it needs to be understood by the developers and
then they talk with customer representatives. The techniques
used in the agile development processes are sometimes
described vary vaguely and the actual implementation is left to
the developers. This is a result of the emphasis on highly
skilled people in agile methods: “good” developers will do the
“right thing”. Traditional approaches, on the other hand, of
prescribe details of what needs to be done and so provide more
guidance to do the “right” thing. Unfortunately, determining
upfront what the right thing in a given project context is, is
very difficult. As RE management is based on documents, is
not very well represented in agile software development
approaches. Documentation is a part of agile software
development but its extend is not even in the ballpark as in RE.
As all agile approaches include at least a minimum of
documentation, it is the responsibility of the development team
to ensure enough documentation is available for future
maintenance. Overall, in key areas (like stakeholder
involvement) agile methods and RE are pursuing similar goals.
The major difference is the emphasis on the amount of
documentation needed in an effective project. This partially
steams from differences in core assumptions on the stability of
requirements and empirical studies on the cost effectiveness of
both approaches are required.

References
[1] Linda A. Macaulay: Requirements Engineering, Springer

Verlag, 1996.
[2] Gerald Kotonya and Ian Sommerville: Requirements

Engineering, John Wiley & Sons, 1997.
[3] Kent BeckExtreme Programming explained, Addison-Wesley,

1999.
[4] Scott W. Ambler: Agile Modeling, John Wiley & Sons., 2001.
[5] James A. Highsmith III: Adaptive Software Development, Dorset

House Publishing, 1996.
[6] Alan M. Davis: Software Requirements Revision Objects,

Functions, & States, Prentice Hall PTR, 1994.
[7] Ken Schwaber, Mike Beedle: Agile Software Development with

Scrum, Prentice Hall, 2001.
[8] Alistair Cockburn : Agile Software Development, Addison-

Wesley, 2002.
[9] Jennifer Stapleton : DSDM - Dynamic System Development

Method, Addison-Wesley, 1995.
[10] Martin Fowler: The new methodology,

http://www.martinfowler.com/articles/newMethodology.html
(last visited: May 2003).

[11] Pekka Abrahamsson, Outi Salo, Jussi Rankainen & Juhani
Warsta : Agile software development methods - Review and
analysis, VTT Electronics, 2002.

[12] Peter Coad, Eric Lefebvre, Jeff De Luca : Java Modeling in
Color with UML, Prentice Hall PTR, 1999, Chapter 6.

[13] Karl E. Wiegers : Software Requirements, Microsoft Press, 1999
[14] Standish Group : Chaos Report, http://www.standishgroup.com.

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

