Development of an Infrastructure for the Growth and Characterization of GaN on Nitrided Sapphire

Thesis

Submitted to the Eberly College of Arts and Sciences of West Virginia University In Partial Fulfillment of the Requirements for The Degree of Master of Science in Physics

> By Matthew R. Millecchia Morgantown, West Virginia December, 1997

Abstract

A custom ultrahigh vacuum chamber was constructed suitable for study of GaN growth kinetics. Design modifications have been made in this growth chamber to allow for growth of GaN under a wide range of conditions. The ion content from a rf-plasma source was studied and controlled for future nitridation of sapphire experiments. It was shown to be possible to both decrease and increase the ion content from the source. A temperature dependent Hall effect measurement set-up was implemented. The set up was tested using as-grown samples and shown to be an effective way of determining the electrical properties of semiconductors. Future areas of research relying on the infrastructure created herein are outlined.

Acknowledgments

To my fiancee and life partner, Brooke Opal Sharpe, I owe my deepest gratitude. The love and support she has given me has brought meaning to my work and my struggles in life. For this I will always be thankful and indebted.

For believing in me above and beyond all natural tolerance, I would like to thank my advisor, Dr. T. H. Myers. The direction and pride in my life could not have been so fully realized without the constant support of someone who has traveled the path before me and prospered.

To Dr. C. Stinespring and his lab members I would like to thank for the use of the facilities and specifically Jeff Gold for the mass spectrometer measurements. I would also like to thank Dr. C. Stinespring and Dr. L. Halliburton for taking the time to be members of my thesis committee. The input has been essential to the completion of my work.

I would like to acknowledge three of the most exceptional teachers I have ever met. In their Mechanism 101 class, they taught me more about integrity and intensity in life and work than anyone could possibly ask for, and for that, among many other things, I thank them greatly.

Special thanks to Lauren Hirsch and her vast understanding of semiconductor growth and to Aaron Ptak for performing Hall measurements for this work and to both for taking over where I had to leave off. Final thanks to my family and all my friends and teachers around the department who have all helped me survive and grow as a physicist and as an individual.

iii

Abstra	act		ii		
Acknowledgments					
Table of Contents					
List of	f Figure	S	vi		
Chapt	ter				
1.	Intro	duction	1		
	1.1	Wide Bandgap Semiconductor Technology	1		
	1.2	Gallium Nitride	3		
	1.3	Nitridation of Sapphire	5		
	1.4	Goals and Motivation	7		
2.	GaN	Growth Chamber with Desorption Mass Spectrometry Capabilities	9		
	2.1	Growth Chamber	9		
		2.1.1 System Requirements	9		
		2.1.2 Chamber Design	11		
	2.2	Desorption Mass Spectrometry	17		
		2.2.1 Growth Kinetics	17		
		2.2.2 Desorption Mass Spectrometry and Growth Kinetics	24		
		2.2.3 Desorption Mass Spectrometry Setup	27		
3.	N ₂ So	urce: Characterization and Control of Nitrogen Ion Content	33		
	3.1	Source Description	33		
	3.2	Experimental Setup	35		

Table of Contents

	3.3	Results	
4.	Tem	perature Dependent Hall Measurements	53
	4.1	Electrical Properties of Semiconductors	
		4.1.1 Free Electron Model	
		4.1.2 Quantum Mechanical Model	
	4.2	Hall Effect in Semiconductors	
	4.3	Experimental Setup	61
	4.4	Results	64
5.	Futu	re Areas of Research	
	5.1	Nitridation of Sapphire	
	5.2	GaN Grown on Nitrided Sapphire	
	5.3	Electrical Characterization of GaN Grown on Nitrided Sapphire	

ferences75
ferences75

List of Figures

Figure 2.1	General external MBE2 design schematic	12
Figure 2.2	EPI designed substrate heater	13
Figure 2.3	General internal MBE2 chamber design schematic	15
Figure 2.4	Schematic diagram of processes involved in film nucleation and growth	
Figure 2.5a	AFM image of prismatic hillock features	
Figure 2.5b	TEM image of inversion domains and prismatic hillock features	21
Figure 2.5c	TEM image of inversion domains and prismatic hillock features (close up)	22
Figure 2.6a	Growth rate vs. Ga flux, with and without hydrogen	
Figure 2.6b	Growth rate vs. growth temperature, with and without hydrogen	25
Figure 2.7	DMS schematic diagram	
Figure 2.8	Schematic diagram of QMS system	
Figure 3.1	Oxford Applied Research CARS25 Radical Beam source for the production of atomic nitrogen	
Figure 3.2	WVU Chemical Engineering Chamber used to study nitrogen source	
Figure 3.3	Schematic of bias grid setup	
Figure 3.4	Schematic of bias plate setup	
Figure 3.5	Schematic of substrate bias	40
Figure 3.6	Bias grid setup, current vs. bias voltage	41

Figure 3.7	Bias grid setup, mass spec. vs. bias voltage	43
Figure 3.8	Bias plate setup, current vs. bias voltage	44
Figure 3.9	Bias plate setup, mass spec. vs. bias voltage	46
Figure 3.10	Mass spectrometer and current data plotted as a function of bias voltage	48
Figure 3.11	Mass spectrometer measured intensity vs. ion energy of N+ for three different bias plate conditions	50
Figure 3.12	Mass spectrometer measured intensity vs. ion energy of N_2 + for three different bias plate conditions	51
Figure 4.1	Semiconductor band structure schematic	55
Figure 4.2	Hall effect measurement schematic	59
Figure 4.3	Van der Pauw geometry schematic and basic Hall equations	62
Figure 4.4	Weighting function distribution across sample with corner contacts	63
Figure 4.5	Temperature dependent Hall effect measurement setup schematic	65
Table 4.1	Room temperature Hall results for various samples grown by WVU MBE Laboratory	67
Figure 4.6	Temperature dependence of resistivity for a CdGeAs ₂ sample	68
Figure 4.7	Temperature dependence of carrier concentration for a CdGeAs ₂ sample	69
Figure 4.8	Temperature dependence of mobility for a CdGeAs ₂ sample	71