Lecture 9

Predator-prey population dynamics
S&S, Chap. 14

notation warning: variable names in S&S are nonstandard, so ours will be different…

Effect on Species 1

Effect on Species 2

0

- Competition Amensalism

Neutral

Predation Parasitism Commensalism

+ Mutualism

Clicker Question; Predators of Yellowstone

A. Wolf
B. Grizzly Bear
C. Mountain Lion
D. None of the above

Which animal concerns me the most (as a possible prey item?) while hiking alone in Yellowstone National Park?
Which West Virginia animal are you most afraid of? (with you as a possible victim!)

A. rattlesnake B. black widow spider C. black bear
D. white-tailed deer E. hunter

Deer*

*more than 1.5 million crashes involving deer each year
*cause over $1 billion in damage
*150 of the deer collisions are fatal (vs. 80-90 via hunting accidents)
*there are more than 10,000 people injured

Terminology - caution wrt book!

Let Prey Population = \(N_1 \) (S&S use \(N_{\text{prey}} \))
Let Predator Population = \(N_2 \) (S&S use \(N_{\text{pred}} \))
We will develop 2 population growth equations: 1 for prey, 1 for predator.
Predator-Prey Dynamics

Starting Point: Exponential Population Growth; prey population

Functional response of predator

Functional response - the number of prey caught per predator per unit time.

\(p \) is the proportion of prey caught per predator per unit time (note: S&S use 'c' for this variable)

Real Data

Real Data
Prey Population Growth

- Substituting pN_1 for the functional response:

- where, N_1 is the prey population size, r_1 is the prey intrinsic rate of increase, p is the proportion of prey caught per predator per unit time, and N_2 is the predator population size

Predator Population Dynamics

- predator birth rate

- The manner in which prey N affects predator births is the **numerical response** of the predator

Numerical response of the predator

- How many kudus does it take to yield one baby lion birth?
Lecture 9

Predator numerical response

How many ground squirrels must be caught to make one baby gyrfalcon?

Wolves and elk

How many elk must be caught per baby wolf produced?

Numerical response

Birth rate of the predator = (efficiency with which caught prey are converted to baby predators) x (the number of prey caught per predator per unit time):

Note: we use the variable 'a' for the efficiency of conversion; S&S use 'b'. I will stick with a, because b has a different meaning.
Predator Population Growth

Integrating the numerical response into the predator population growth equation, we have:

Predator-Prey Equations

- Both equations contain N_1 and N_2
- Both equations contain p
- How to solve? FIND THE ZERO GROWTH ISOLINES!

Find species 1’s zgi now

Species 1 - zero-growth isline

What do you think will happen to the prey population (N_1) if the 2-species ‘community’ is at the point?
A. It will increase
B. It will remain the same
C. It will decrease

(Hint: Is the predator population large or small?)

Draw an arrow showing the population change for the prey.
What do you think will happen to the prey population (N_1) if the 2-species ‘community’ is at the point?
A. It will increase
B. It will remain the same
C. It will decrease

Both equations contain N_1 and N_2
Both equations contain p
How to solve? FIND THE ZERO GROWTH ISOLINES!

Find species 2’s zgi now
What do you think will happen to the predator population (N_2) if the 2-species 'community' is at the point?
A. It will increase
B. It will remain the same
C. It will decrease

Hint: Note the prey N at the dot
Now, put the two graphs together. Place arrows for each species at each point.

Try this one on your own!
Place arrows at each of the dots, showing how the 2-species community is changing at each point.
Theory Summary

- Predator-prey theory developed from exponential growth equations based on two premises:
 - Prey population growth rates are reduced by predation via death
 - Predator births are positively influenced by prey population size
- Predicts neutrally-stable oscillations of both predator and prey population sizes

Lynx-Hare Dynamics

- Of the lynx, Ernest Thompson Seton wrote "It lives on rabbits, follows the rabbits, thinks rabbits, tastes like rabbit, increases with them, and in their failure dies of starvation in the unrabbitted woods"
Lynx-hare cycle

Hudson’s Bay Company records show:

What feature(s) of the above graph match the predictions of the Volterra Predator-Prey Equations?

What feature(s) of the above graph DO NOT match the predictions?

Sample (Easy) Exam Problem

If \(\frac{dN_{\text{lynx}}}{dt} = -0.5 \), \(\frac{dN_{\text{hare}}}{dt} = 1 \),

which quadrant of the predator prey cycle is this two-species community in?

Apparent and actual correspondence of theory and real world

- Hudson Bay data are flawed - lynx pelts were from western Canada; hare pelts from eastern Canada - the cycles were not directly linked
- Cycles in the same region; however, prey populations often cycle of predators!
- Predator-prey cycles may be ‘driven’ by underlying prey-vegetation cycles.
Greater Complexity

Other examples of predator-prey cycling

- Natural populations:
 - Snowy owl - lemming
 - Fox - lemmings
- Laboratory populations:
 - Azuki bean weevil - braconid wasp
 - Paramecium - Didinium
 - Six-spotted mite - predatory mite

Real-World Predictions
Flowing From Theory

- Exponential -> Invasive species outbreaks
- Logistic -> Prudent predator behavior*
- Competition -> Limiting similarity, character displacement
- Volterra Predator-Prey -> Volterra Principle*