DATES Themes & Topics Readings

ECOLOGY - THE STUDY OF THE RELATIONSHIP BETWEEN ORGANISMS AND THEIR ENVIRONMENT Chap. 1

Jan. 8, 10 What is ecology? Levels of ecological organization The process of ecological investigation Case Study: amphibian decline & UV-B Major ecological lessons Articles 1-4

ECOSYSTEMS HAVE MANY SHAPES AND SIZES

What is an ecosystem? Approaches to investigating ecosystems

ENVIRONMENTAL CONDITIONS AFFECT ALL LIVING THINGS

Jan. 12, 17 Earth as an Ecosystem The physical & chemical environment of Earth Energy The planetary energy budget Atmospheric circulation Ocean structure & circulation

Jan. 19, 22 The effects of atmospheric & oceanic circulation Applications: Human alteration of the global environment Rising CO₂

Jan. 24, 26, 29 Global climate change Stratospheric ozone depletion Changing tropospheric chemistry Articles 6 & 7 Ozone Depletion FAQs Article 8

SIMILAR ENVIRONMENTS CAN SUPPORT SIMILAR ECOSYSTEMS Chaps. 4-5 Chaps. 23-25

Jan. 31 Biomes Controlling factors Tundra, boreal forests, & temperate forests Article 9

Feb. 2 Tropical forests & savanna

Feb. 5 Grasslands & Deserts

Feb. 7 The ocean Applications: Estimating global plant productivity

NATURAL SYSTEMS RECYCLE ESSENTIAL NUTRIENTS Chap. 22

Feb. 9 Global Biogeochemical Cycles The hydrologic & carbon cycles Pgs. 65-68

Feb. 12, 14 The nitrogen & phosphorus cycle

Feb. 16 Local Nutrient Cycles Inputs, internal transformations, & outputs Applications: overfertilization of land & water Article 10

NATURAL SYSTEMS ARE MAINTAINED AND CONSTRAINED BY PROCESSING ENERGY Chap. 20

Feb. 19, 21 Energy flow, trophic levels & trophic structure Productivity Applications: Biological magnification of toxins
INTERACTING POPULATIONS FORM ECOLOGICAL COMMUNITIES
Chap. 26

Feb. 23, 26 Types and patterns of species diversity
Island biogeography
Article 11
Pgs. 408-410

COMMUNITIES RECOVER FROM DISTURBANCE BUT NOT ALWAYS
Chap. 18

Feb. 28 Primary & Secondary Succession
Mar. 2 Communities can exist in several stable configurations
Applications: Climates change, communities change

POPULATIONS ARE INDIVIDUALS OF A SPECIES LIVING IN THE SAME PLACE AT THE SAME TIME

Mar. 5 Populations defined
Population structure
Density, distribution and dispersion
Applications: Finding rare species

ALL POPULATIONS CAN GROW EXPONENTIALLY

Mar. 7 Simple exponential growth
Mar. 9 Exponential growth and age structure
Exponential growth and stage structure
Sensitivity analysis
Applications: Human population growth

NO POPULATION GROWS WITHOUT LIMITS

Mar. 12, 14 Density-Dependence (within species)
Mar. 16 Competition (between species)
Mar. 19 *Applications: Evolution of life histories and niches*

Mar. 21 Predator-prey dynamics
Mar. 23 *Applications: Volterra Principle*

Apr. 2 Herbivory
Parasitism
Mutualism
Applications: The value of mutualisms

THE EVOLUTIONARY PLAY OCCURS IN AN ECOLOGICAL THEATER

Apr. 4 The process of evolution
The Hardy-Weinberg Law
Apr. 9, 11 Mutation
Apr. 11 Drift
Natural selection
Model of allele frequency change

Apr. 13, 16 Selection in the ‘real’ world on ‘real’ traits
Apr. 18 Speciation
Apr. 20 Speciation
Readings to be assigned
NOTHING IN BIOLOGY MAKES SENSE EXCEPT IN THE LIGHT OF EVOLUTION

Apr. 23 The evolution of sex and sexual selection
 The evolution of behavior

 Applications: Memes; the cultural equivalent of genes

TO KEEP EVERY COG AND WHEEL IS THE FIRST PRECAUTION OF INTELLIGENT TINKERING

Apr. 25 The growing science of conservation biology
 The value of biological diversity
 Extinction: Causes & Prevention

Apr. 27 Emerging concepts in conservation biology

Chap. 28