

Lotka-Volterra Model

Premise: Adding individuals of another species is the same *kind* of density-dependent effect as adding individuals of the same species. But the magnitude may be greater (α>1) or less (α<1) than with interspecific competition

$$\frac{dN_1}{dt} = r_1 \left(\frac{K_1 - N_1 - \alpha N_2}{K_1}\right) N_1$$

Competition Coefficient (a₁₂)

•• If $\alpha = 1$, then species 2 = species 1

- If $\alpha < 1$, sp. 2 has a smaller effect than sp. 1
- →If α >1, sp. 2 has a greater effect on 1 than 1
- Note: if $\alpha = 0$, then sp. 2 has no effect on sp. 1.

 Note: in some sample exam problems, you may see: a₁₂ (=α) and a₂₁ (=β) for the competition coefficients

Outcome of Competition

- Species 1 WINS!!! (where $K_1 > K_2/\beta$ AND $K_1/\alpha > K_2$)
- →Endpoint: $N_1=K_1$, $N_2=0$
- →Endpoint is the same regardless of starting N.

Why are we doing this?

- New parameters important: K, α
 Defines:
- →conditions for coexistence,
 →the limiting similarity
- Predicts character displacement in zones of sympatry for competing species

Graphical analysis - conclusions

- There are four possible outcomes of competition
- \rightarrow Qualitative outcome =f(K, α)
- ➡r does not influence the outcome (exc. Case 4)
- Initial N does not influence the outcome (exc. Case 4)
- We can define the boundary conditions of stable coexistence - VERY IMPORTANT!

Summary

- Competition theory emphasizes the importance of competitive ability and carrying capacity in determining the outcome of competition
- Next time: The theory predicts the conditions required for coexistence, defines the limiting similarity, and predicts character displacement in zones of sympatry for competing species

Lectur