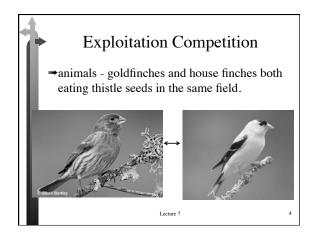
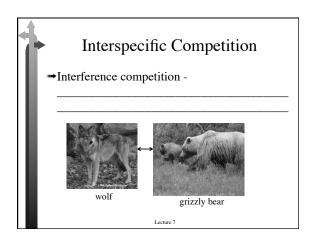
Previous Lecture Population Dynamics D. Intraspecific Competition

Lecture 7 →Population Dynamics →Interspecific competition - Chapter 13

Interspecific Competition: Exploitation

Exploitation competition
——plants - Deschampsia antarctica and Colobanthus quitensis (and moss!) using water or nutrients from the same soil patch, and shading each other.





4	Lotka-Volterra Model		
	Premise: Adding individuals of another species is the same <i>kind</i> of density-dependent effect as adding individuals of the same species. But the magnitude may be greater (α>1) or less (α<1) than with interspecific competition		
	$\frac{dN_1}{dt} = r_1 \left(\frac{K_1 - N_1 - \alpha N_2}{K_1} \right) N_1$		

Competition Coefficient (a₁₂)

- α If α= 1, then species 2 = species 1
- \longrightarrow If α<1, sp. 2 has a smaller effect than sp. 1
- \longrightarrow If α>1, sp. 2 has a greater effect on 1 than 1
- Note: if $\alpha = 0$, then sp. 2 has no effect on sp. 1.
- Note: in some sample exam problems, you may see: a_{12} (= α) and a_{21} (= β) for the competition coefficients

Lecture 7

Review: Lotka-Volterra Competition

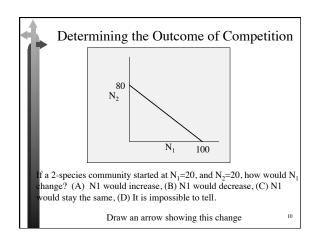
→For two species, L-V is two equations:

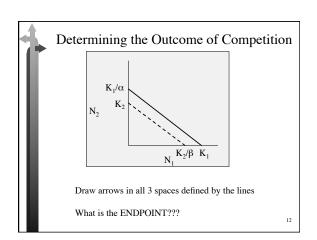
$$\frac{dN_1}{dt} = r_1 (\frac{K_1 - N_1 - \alpha N_2}{K_1}) N_1$$

$$\frac{dN_2}{dt} = r_2 (\frac{K2_1 - N_2 - \beta N_1}{K_2}) N_2$$

▶ Determining The Outcome of Competition

"Zero-growth isolines" determined for each species





Outcome of Competition

- Species 1 WINS!!! (where $K_1 > K_2/\beta$ AND $K_1/\alpha > K_2$)
- \longrightarrow Endpoint: $N_1=K_1$, $N_2=0$
- **■** Endpoint is the same regardless of starting N.

Lecture 7

13

14

Lecture

Why are we doing this?

- [™]New parameters important: K, α
- >>> Defines:
 - conditions for coexistence,
 - ⇒the limiting similarity
- → Predicts character displacement in zones of sympatry for competing species

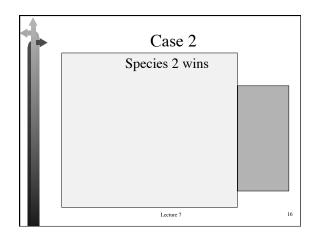
Lecture 7

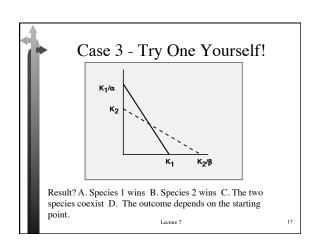
Graphical analysis - Case 1

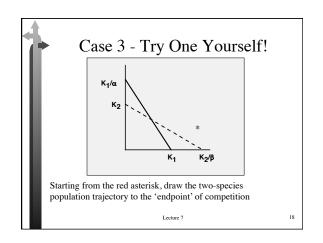
Species 1 Wins

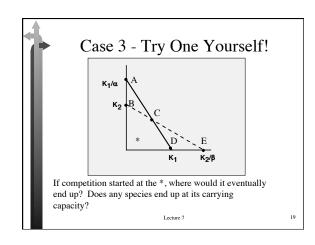
Conditions:

ture 7









Graphical analysis - conclusions

- → There are four possible outcomes of competition
- \longrightarrow Qualitative outcome = $f(K, \alpha)$
- r does not influence the outcome (exc. Case 4)
- ➡Initial N does not influence the outcome (exc. Case 4)
- ⇒We can define the boundary conditions of stable coexistence - VERY IMPORTANT!

e 7

Summary

- Competition theory emphasizes the importance of competitive ability and carrying capacity in determining the outcome of competition
- Next time: The theory predicts the conditions required for coexistence, defines the limiting similarity, and predicts character displacement in zones of sympatry for competing species

Lecture 7	22