Previous lecture

- Demography is the study of controls of birth and death in populations
 - → Populations are structured
- **>>** Useful summary statistics
 - **⇒**Life table
 - $\rightarrow e_x$; life expectancy
 - ™Net reproductive rate

Lecture 4

- [™]Population Projection
- m⇒λ
- [™]Propensity fitness

Population Projection

- → Population prediction:
- **→**Population projection:

Population Projection

- → Knowing survival rates and birth rates, we can project future population sizes
- →2 expressions of survival and fertility are needed for projections:
 - 1. s_v
 - >>> 2. F_x

Note: In many texts, and old sample Bio 221 probs, $\mathbf{s}_{\mathbf{x}}$ is called $\mathbf{p}_{\mathbf{x}}$

Population Projection

- →Knowing survival rates and birth rates, we can project future population sizes
- →2 expressions of survival and fertility are needed for projections:
 - $1. s_x (= l_{x+1}/l_x)$
 - $rac{1}{2} \cdot F_x (=s_x b_{x+1})$

Population Projection

→Knowing survival probabilities (s_x), the number of individuals moving into the next age class can be calculated:

$$N_{x+1}(t+1) = s_x N_x(t)$$

Population Projection (part 2)

To complete the accounting, newborn numbers need to be estimated using fertilities (F_x) :

$$N_0(t+1) = \sum_{x=0}^{lastage} F_x N_x(t)$$

Population Projection Equations

$$N_0(t+1) = \sum_{x=0}^{lastage} F_x N_x(t)$$

$$N_{x+1}(t+1) = s_x N_x(t)$$

$$N_{x+1}(t+1) = s_x N_x(t)$$

Sample Projection

The projection equations are used to determine $N_{(x+1)}(t+1)$:

0	20	27	34.1	40.71	48.21	58.37	70.31	84.8	101.86	122.88	148.0
1	10	6	8.1	10.23	12.05	14.46	17.51	21.0	25.44	30.56	36.8
2	0	5	3.0	4.05	5.1	6.03	7.23	8.7	10.50	12.72	15.2
3	0	0	3.0	1.8	2.43	3.06	3.62	4.4	5.22	6.30	7.6
4	0	0	0	1.35	0.81	1.09	1.38	1.6	1.94	2.35	2.8
5	0	0	0	0	0.33	0.20	0.27	0.35	0.40	0.49	0.5
Total N(t)	30	38	48.2	58.14	68.93	83.21	100.32	120.85	145.36	175.30	211.2
Lambda	λ	1.27	1.27	1.21	1.19	1.21	1.20	1.20	1.20	1.20	1.2

	Calculate Newborns (N ₀)
$N_0(t+1)$	$\begin{aligned} &) = \sum_{x=0}^{lastage} F_x N_x(t) \\ &) = (0.6 * 34.1) + (1.5 * 8.1) + (1.8 * 3) + (0.88 * 3) \\ &) = 40.65 \end{aligned}$
Note	e: Your book has a bit of rounding error for this

Sample Projection The projection equations are used to determine $N_{(x+1)}(t+1)$:											
Table 10.6	Popula	tion Proj	ection Tab	le, Squirr	el Populat	ion					
	20	27	34.1	40.71	48.21	58.37	70.31	84.8	101.86	122.88	148.
0		6	8.1	10.23	12.05	14.46	17.51	21.0	25.44	30.56	36.8
0	10		3.0	4.05	5.1	6.03	7.23	8.7	10.50	12.72	15.3
	0	5	3.0								
1		5	3.0	1.8	2.43	3.06	3.62	4.4	5.22	6.30	7.
1 2	0				2.43 0.81	3.06		4.4 1.6	5.22 1.94	6.30 2.35	
2 3	0	0	3.0	1.8			3.62				2.
1 2 3 4	0 0	0	3.0	1.8 1.35	0.81	1.09	3.62 1.38	1.6	1.94	2.35	7.0 2.1 0.5 211.3

able 10	.7 Appr	roximation	of Stable	Age Distrib	oution, Squ	irrel Popu	lation				
				Propo	rtion in Ea	ich Age Cla	ss for Year				
0	.67	.71	.71	.71	.69	.70	.70	.70	.70	.70	.70
1	.33	.16	.17	.17	.20	.17	.17	.18	.18	.18	.13
2		.13	.06	.07	.06	.07	.07	.07	.07	.07	.0
3			.06	.03	.03	.04	.04	.03	.03	.03	.0.
4				.02	.01	.01	.01	.01	.01	.01	.0
5					.01	.01	.01	.01	.01	.01	.0
	00 Pearson Educatio		veor /	did the							_

Lambda (λ), the finite rate of increase

 \rightarrow At S.A.D., the population grows at the finite rate of increase (λ).

How demographers ACTUALLY do projections....

*With matrix algebra!

⇒ \(\), the finite rate of increase, is the eigenvalue (a complex function) of the matrix on the left in the equation

Other population projection models

- Classify individuals by size or stage: particularly important for animals or plants whose birth and death rates depend more on size than age.
- a_{ij} is the number of size i individuals (at time t +1) per size j individual (time t).

What is fitness?

An individual has a high fitness if: A) it has the most mates B) it leaves the most offspring, C) it survives the best, D) it can lift the most weights, E) none of the above

Need for a fitness measure

In studies of selection, the value of the phenotype is judged by fitness, for example:

Propensity fitness

- Fitness is a property of the individual
- Fitness should measure the rate at which that individual s genes are propagated
- The **propensity fitness** is the expected 'population growth rate of the individual', where λ is measured for a matrix constructed for each individual in the population

Propensity fitness

- → We determine an **individual's** propensity to produce a certain number of offspring at each age and to survive at each age, then fill in the traditional matrix:
- $\Longrightarrow \lambda^{(i)}$ for this matrix gives the individual's 'propensity fitness'

Fitness

- Because $\lambda^{(i)}$ is determined by the eigenvalue of the matrix $A^{(i)}$, we see that:
 - Fitness depends on the probability of survival
 - Fitness depends on the amount of reproduction
 - Fitness depends on the timing of that reproduction

What is fitness (revisited)?

An individual has a high fitness if: A) it has the most mates B) it leaves the most offspring, C) it survives the best, D) it can lift the most weights, E) none of the above

What Have We Learned So Far?

- **™**Lecture 1 Population statistics
 - (N=Mn/R)
 - **→**Distribution
 - → dispersion (I=V/mean)
- **■** Lecture 2 Beginning population dynamics
 - Exponential growth: dN/dt=rN, N(t)=N(0)e^{rt}

What Have We Learned So Far?

- **■** Lecture 3 Demography (and age structure)
 - Deevey curves
 - **→**Life table and derivatives
 - ⇒Life expectancy
 - →Net reproductive rate
- Lecture 4 Demography & Fitness
 - →Population Projection
 →Propensity Fitness

Summary

- The life table yields data useful for demographic projections
- The projection equations allow us to:
 - \Longrightarrow estimate finite rates of increase (λ)
 - determine the **stable age distribution**
- If the matrix represents individual probabilities of surviving and reproducing at each age (rather than population averages), then λ = fitness