

Rapid Growth of the Human N

- [doubling time; 123 y]
 3 billion in 1960 (33 years later), 4 billion in 1974 (14 years later)
- 5 billion in 1987 (13 years later), 6 billion in 1999 (12 years
- → 7 billion in 2011 (12 years later)

Based on the above information about doubling times, what can we say about world population growth from 1804 - $\,$ 1999?

A. It's slower than exponential.

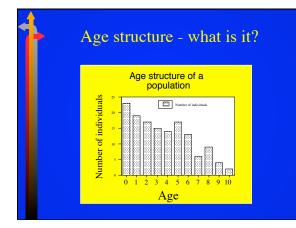
- B. It is exponential.C. It's faster than exponential

Penny for your thoughts about the 'Moon Problem'

-Number of pennies to reach the moon:

- -(384,000 km x 1000 m/km x 1000 mm/m)/ $1.52 \text{ mm/penny} = 2.526315789 \text{ x } 10^{11} = \text{N}_{\text{r}}$
- $\rightarrow N_0=1$

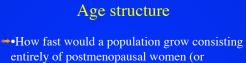
 $\rightarrow \lambda = 2$


Answer: 0.7289 m (approximately 29")

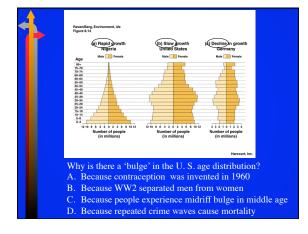
Lecture 3

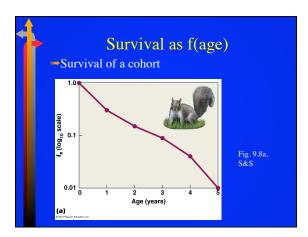
Demography
 Smith & Smith Chapter 9
 Use the formulas given in class!!!

Demography

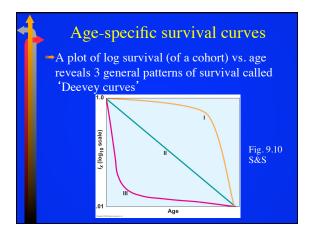

- →What is demography?
- Importance of demography:
 - Human biology: _____
 - -Ecologically:

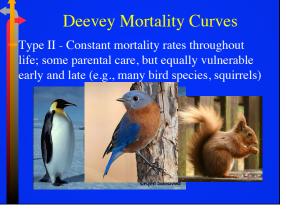
Age structure


Why is age structure important?How fast would a population grow...if it consisted entirely of newborns?

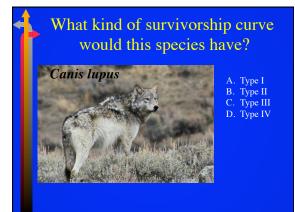


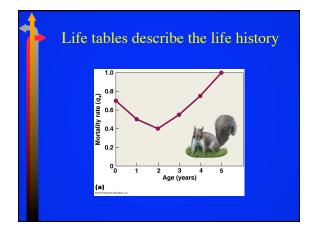
celibate males or Shakers!)

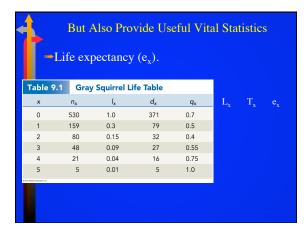




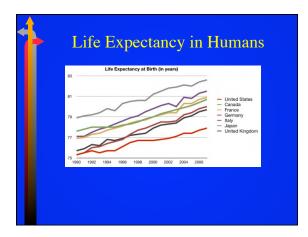


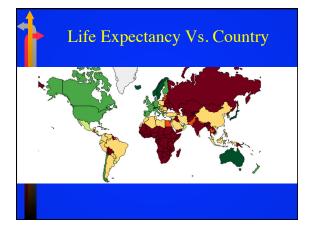






Cohort data - By censusing a population annually, demographers assemble the data needed for a life table. Typical cohort data and life table statistics:									
Table 9.1	Gray Sc	uirrel Life	Table						
x	n _x	l _x	d _x	q _x					
0	530	1.0	371	0.7					
1	159	0.3	79	0.5					
2	80	0.15	32	0.4					
3	48	0.09	27	0.55					
4	21	0.04	16	0.75					
5	5	0.01	5	1.0					
3	48 21	0.09 0.04	27 16	0.55 0.75					





Life Tables May Also Contain Age-Specific Birth Rates										
Table 9.4 Gray Squirrel Fecundity Table										
х	l _x	b _x	l _x b _x							
0	1.0	0.0	0.00							
1	0.3	2.0	0.60							
2	0.15	3.0	0.45							
3	0.09	3.0	0.27							
4	0.04	2.0	0.08							
5	0.01	0.0	0.00							
Σ		10.0	1.40							

-	N	et Rep	roductive F	Rate
	Table 9.4	Gray Sq	uirrel Fecundity	/ Table
	x	l _x	b _x	l _x b _x
	0	1.0	0.0	0.00
	1	0.3	2.0	0.60
	2	0.15	3.0	0.45
	3	0.09	3.0	0.27
	4	0.04	2.0	0.08
	5	0.01	0.0	0.00
	Σ		10.0	1.40
	*note; in many tex sample Bio. 221 p b _x is called m _x			Net reproductive rate

Population Projection

•<u>Population prediction</u>:

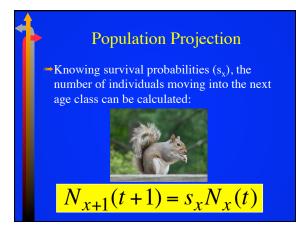
Population projection:

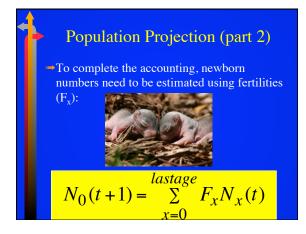
Population Projection

-Knowing survival rates and birth rates, we can project future population sizes

2 expressions of survival and fertility are needed for projections:

➡1. s_x


→2. F_x


Note: In many texts, and old sample Bio 221 probs, \mathbf{s}_{x} is called \mathbf{p}_{x}

Population Projection

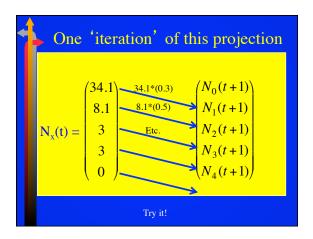
Knowing survival rates and birth rates, we can project future population sizes
2 expressions of survival and fertility are needed for projections:

→1.
$$s_x (= l_{x+1}/l_x)$$

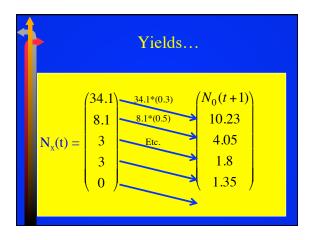
→2. $F_x (= s_x b_{x+1})$

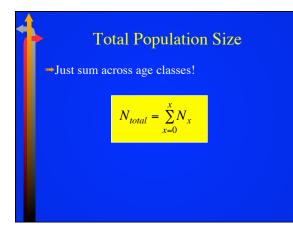
	Computin	ng p _x and F	r x						
Table 10.4 Gray Squirrel Fecundity Table									
x	$l_x = s_x$	b_x F_x	$l_x b_x$						
0	1.0	0.0	0.00						
1	0.3	2.0	0.60						
2	0.15	3.0	0.45						
3	0.09	3.0	0.27						
4	0.04	2.0	0.08						
5	0.01	0.0	0.00						
Σ		10.0	1.40						

Population Projection Equations


$$N_{0}(t+1) = \sum_{x=0}^{lastage} F_{x}N_{x}(t)$$

$$N_{x+1}(t+1) = s_{x}N_{x}(t)$$


		Sample Projection									
	de	tern	nine	N _{(x+}	₁₎ (t+	1):	s are	used	l to		
ible 10.6	Popula	tion Proje	ection Tab	le, Squirr	•						
						Year (t)					
Age	0	1	2	3	4	5	6	7	8	9	1
D	20	27	34.1	40.71	48.21	58.37	70.31	84.8	101.86	122.88	148
t.	10	6	8.1	10.23	12.05	14.46	17.51	21.0	25.44	30.56	36
2	0	5	3.0	4.05	5.1	6.03	7.23	8.7	10.50	12.72	15
3	0	0	3.0	1.8	2.43	3.06	3.62	4.4	5.22	6.30	7
4	0	0	0	1.35	0.81	1.09	1.38	1.6	1.94	2.35	2
5	0	0	0	0	0.33	0.20	0.27	0.35	0.40	0.49	C
Fotal $N(t)$	30	38	48.2	58.14	68.93	83.21	100.32	120.85	145.36	175.30	211
Lambda	λ	1.27	1.27	1.21	1.19	1.21	1.20	1.20	1.20	1.20	1
yright © 2009 Pearso	n Education, Inc	6									



Calculate Newborns (N₀)

$$\begin{split} N_0(t+1) &= \sum_{x=0}^{lastage} F_x N_x(t) \\ N_0(t+1) &= (0.6*34.1) + (1.5*8.1) + (1.8*3) + (0.88*3) \\ N_0(t+1) &= 40.65 \end{split}$$

Note: Your book has a bit of rounding error for this...

Summary

- Demography is the study of controls of birth and death in populations
- -Census data are summarized in a life table
- -Summary statistics derived from the life table tell us interesting properties of a species in a particular environment, such as life expectancy and net reproductive rate
- -Survival (s_x) and fertility (F_x) statistics can be used to project future population sizes

Next lecture

Population projection and fitnessAspects of human demography