Previous lecture **All Populations Potentially Grow Exponentially → Memorize these equations and be able to use them $\frac{dN}{dr} = rN$ in problems: dt Side note: $N(t) = N(0)e^{rt}$ $N(t)=N_t$ $N(t) = N(0)\lambda^t$ $N(0)=N_0$ Population of the Earth (2012): **6,998,809,870** Population of the Earth (2013): **7,069,216,620** Population of the Earth (2014): **7,150,667,610** Population of the Earth (2015): **7,229,246,583** Population of the Earth (2016): 7,310,718,777 Growth: 81,472,194 human beings added in the last year http://www.census.gov/ [=ca. 10 New York Cities] Rapid Growth of the Human N → 1 billion in 1804, 2 billion in 1927 (123 years later) → [doubling time; 123 y]

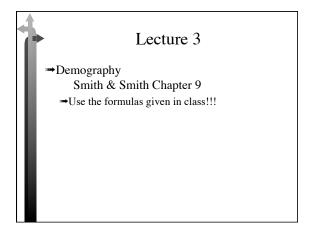
later) [doubling time; 39 y]

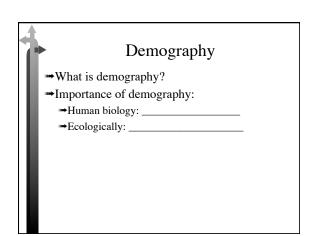
→ 7 billion in 2011 (12 years later)

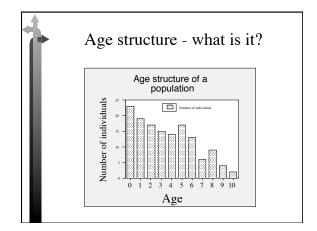
Based on the above information about doubling times, what can we say about world population growth from 1804 - 1999?

⇒ 3 billion in 1960 (33 years later), 4 billion in 1974 (14 years later)

→ 5 billion in 1987 (13 years later), 6 billion in 1999 (12 years


A. It's slower than exponential.


B. It \underline{is} exponential.

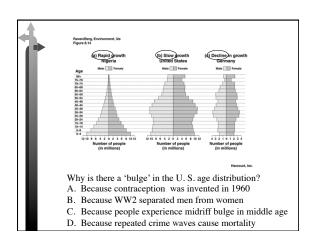

→ [doubling time; 47 y]

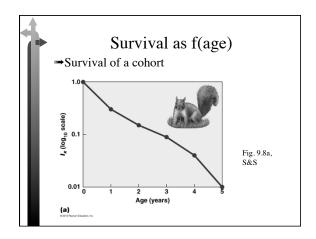
C. It's faster than exponential

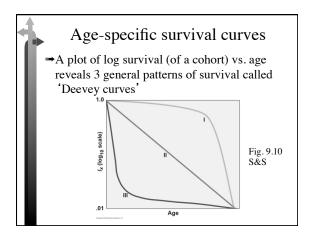
Penny for your thoughts about the 'Moon Problem' Number of pennies to reach the moon: (384,000 km x 1000 m/km x 1000 mm/m)/ 1.52 mm/penny = 2.526315789 x 10 =N N =1 N = 1 Answer: 0.7289 m (approximately 29")

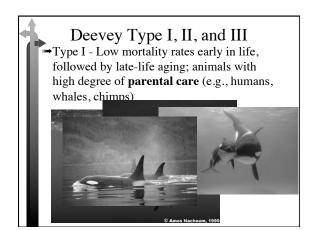
Age structure

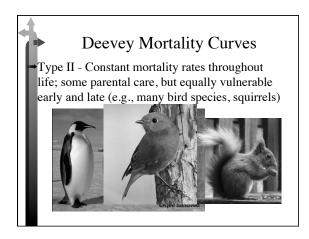
Why is age structure important?
•How fast would a population grow...if it consisted entirely of newborns?

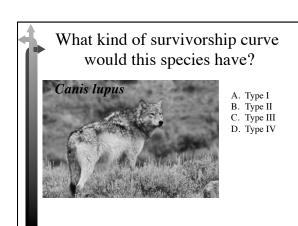


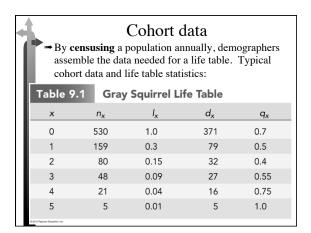


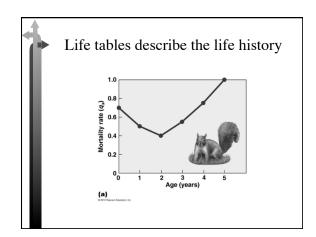

Age structure

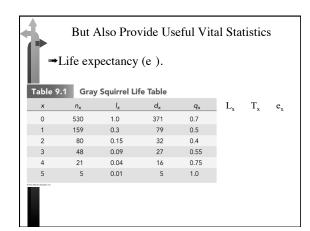

•How fast would a population grow consisting entirely of postmenopausal women (or celibate males or Shakers!)

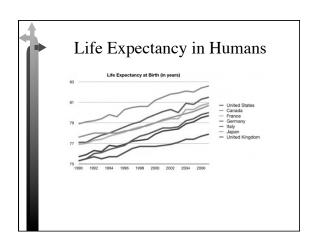


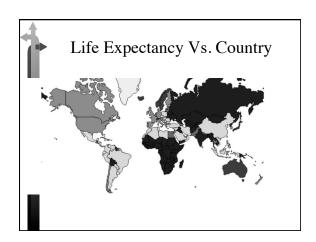









Deevey Mortality Curves Type III - High mortality rates early in life, followed by low rates, if maturity is reached (insects, most plants, e.g., silverswords)



Life Tables May Also Contain Age-Specific Birth Rates						
Table 9.4	Gray Squirre	l Fecundity Ta	ble			
х	l _x	b _x	$l_x b_x$			
0	1.0	0.0	0.00			
1	0.3	2.0	0.60			
2	0.15	3.0	0.45			
3	0.09	3.0	0.27			
4	0.04	2.0	0.08			
5	0.01	0.0	0.00			
Σ		10.0	1.40			

1	N Table 9.4		productive	
и	х	l _×	b _x	l _x b _x
	0	1.0	0.0	0.00
	1	0.3	2.0	0.60
	2	0.15	3.0	0.45
	3	0.09	3.0	0.27
	4	0.04	2.0	0.08
	5	0.01	0.0	0.00
	Σ		10.0	1.40
	*note; in many to sample Bio. 221 b _x is called m _x		ı	Net reproductive rate

1	Population Projection
[™] Populati	on prediction:
[™] Populati	on projection:

Population Projection ■Knowing survival rates and birth rates, we can project future population sizes ■2 expressions of survival and fertility are needed for projections: ■1. s_x ■2. F_x Note: In many texts, and old sample Bio 221 probs, s_x is called p_x

Population Projection

- →Knowing survival rates and birth rates, we can project future population sizes
- → 2 expressions of survival and fertility are needed for projections:
 - $1. s_x (= l_{x+1}/l_x)$
 - $\Rightarrow 2. F_x (=s_x b_{x+1})$

Population Projection

→Knowing survival probabilities (s), the number of individuals moving into the next age class can be calculated:

$$N_{x+1}(t+1) = s_x N_x(t)$$

Population Projection (part 2)

To complete the accounting, newborn numbers need to be estimated using fertilities (F):

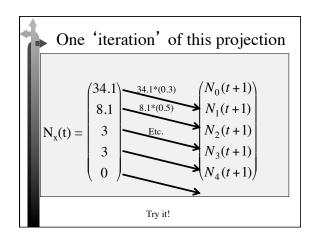
$$N_0(t+1) = \sum_{x=0}^{lastage} F_x N_x(t)$$

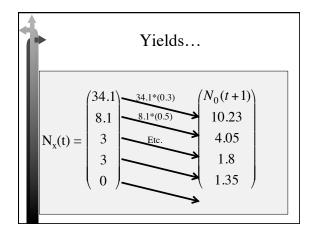
Computing p_x and F_x Table 10.4 | Gray Squirrel Fecundity Table 0.00 0.3 2.0 0.60 0.15 3.0 0.45 0.09 3.0 0.27 0.04 0.08 0.01 0.00 1.40

Population Projection Equations

$$N_0(t+1) = \sum_{x=0}^{lastage} F_x N_x(t)$$

$$N_{x+1}(t+1) = s_x N_x(t)$$


$$N_{x+1}(t+1) = s_x N_x(t)$$



Sample Projection

The projection equations are used to determine N (t+1):

0	20	27	34.1	40.71	48.21	58.37	70.31	84.8	101.86	122.88	148.06
1	10	6	8.1	10.23	12.05	14.46	17.51	21.0	25.44	30.56	36.86
2	0	5	3.0	4.05	5.1	6.03	7.23	8.7	10.50	12.72	15.28
3	0	0	3.0	1.8	2.43	3.06	3.62	4.4	5.22	6.30	7.63
4	0	0	0	1.35	0.81	1.09	1.38	1.6	1.94	2.35	2.83
5	0	0	0	0	0.33	0.20	0.27	0.35	0.40	0.49	0.59
Total $N(t)$	30	38	48.2	58.14	68.93	83.21	100.32	120.85	145.36	175.30	211.25
Lambda	λ	1.27	1.27	1.21	1.19	1.21	1.20	1.20	1.20	1.20	1.20

	Calculate Newborns (N ₀)
	$\sum_{x=0}^{lastage} F_x N_x(t)$ (0.6 * 34.1) + (1.5 * 8.1) + (1.8 * 3) + (0.88 * 3) 40.65
Note: Yo	our book has a bit of rounding error for this

Total Population Size

■Just sum across age classes!

$$N_{total} = \sum_{x=0}^{x} N_x$$

Summary

- → Demography is the study of controls of birth and death in populations
- Census data are summarized in a life table
- Summary statistics derived from the life table tell us interesting properties of a species in a particular environment, such as life expectancy and net reproductive rate
- →Survival (s) and fertility (F) statistics can be used to project future population sizes

Next lecture

- → Population projection and fitness
- Aspects of human demography