

Previous Lecture

- ™ Populations are Structured
- **■** Basic descriptive attributes of populations:
 - →Density (+estimation techniques; quadrat/mark-recapture)
 - **→**Distribution
 - →Dispersion (+estimation technique; index of dispersion):
- → Practice Problem Video on Mark-Recapture on website.

Lecture 2

All Populations Potentially Grow Exponentially

- A. Exponential population growth* (Smith&Smith Chapter 9)
- B. Next: Exponential growth modified by age structure (next time; S&S Chap. 9)

*Faite attention! Exponential growth theory is one of the most important concepts in all of Ecology!

Exponential Growth The 'Law of Exponential Growth' is the Where does this law come from?

Exponential Growth Total rate = per capita rate * capitas Population growth rate (dN/dt):

1

Realized Exponential Growth

- ™Rabbits in Australia
- [™]Gypsy moth in North America
- **™**Locusts in Africa
- →Plague in Europe
- **™**Lemmings in the Arctic
- ™**>**Etc...

1

Sample Problem

- **E. coli cells propagate by binary fission. They don't 'give birth' in the traditional sense. However, if the effective 'birth rate' of these cells is 6 cells/cell*hr, and death rate is 0, and the initial population consists of 100 cells, how long would it take to reach a population size of 4.92 x 10⁴³ cells, enough to cover planet Earth 1 meter deep in bacteria?
- SEE PRACTICE PROBLEM VIDEO 2!

Another sample problem!

- If you wanted to leave \$1,000,000 to one grandchild in 60 years, how much would your initial investment have to be in order to accomplish this, assuming a 10% continuously compounded interest rate?
- ⇒SEE PRACTICE PROBLEM VIDEO 2!

Another thought problem

- Facts: A penny is 19.05 mm in diameter. A penny is 1.52 mm thick. It is 384,400 km to the moon. I start stacking pennies in adjacent stacks (in a single row of stacks). The first stack has 1 penny, the second, 2, the third, 4, etc., doubling each time.
- → How wide would row of penny stacks be when the last stack reaches to the moon?

Summary

- → All populations potentially grow exponentially
- Exponential growth is a "compound interest" phenomenon
- → Occasional "outbursts" of exponential growth do occur in nature