| | | Thenotype | Fitness | Selection coefficient | |---|-------------------|-----------------|-----------------|-----------------------| | 5 | A_1A_1 | ★ Purple | w ₁₁ | s ₁₁ | | | A_1A_2 A_2A_2 | Pink | 1 | 0 | | | A_2A_2 | ★ White | w ₂₂ | s ₂₂ | | What will happen? | | | | | | |-------------------------------|--|---|---|-----------------------|--| | Case | Genotype | Phenotype | Fitness | Selection coefficient | | | 5 | A ₁ A ₁ | Purple | w ₁₁ | s ₁₁ | | | | A_1A_2 | Pink | 1 | 0 | | | | A_2A_2 | White | w ₂₂ | s ₂₂ | | | (B) p v
(C) p v
(D) p v | vill decrease, a
vill reach an eo
vill increase, a | resulting in fix
and approach (
quilibrium bet
approaching 1 a
esulting in fixa |) asymptotic
ween 0 and
asymptotica | 1 | | # Case 5 - Heterozygote superiority With heterozygote superiority, what is the eventual equilibrium p? | Case | Genotype | Phenotype | Absolute | Oddly | | |---|--|-----------|-----------------|--------------------------------------|--| | | | | fitness | relativized
fitness* | | | 6 | A_1A_1 | Purple | W ₁₁ | w ₁₁ '=1+s' ₁₁ | | | | $\begin{vmatrix} A_1A_1 \\ A_1A_2 \end{vmatrix}$ | Fink | W ₁₂ | 1 | | | | | | (lowest) | | | | | A ₂ A ₂ | White | W ₂₂ | w' ₂₂ =1+s' ₂₂ | | | (A)p will decrease, resulting in fixation of A ₂ | | | | | | | (B) p will decrease, and approach 0 asymptotically | | | | | | | (C) p will reach an equilibrium between 0 and 1 | | | | | | ### Real world selection - →Does evolution follow the pattern predicted by the selection equation in the real world? - →Most famous example: *Biston betularia* peppered moth, of Britain, studied by H. B. D. Kettlewell. # Genetics of Melanism - One gene, two alleles. M dominant over m. M produces dark pigmentation in dominant homozygote and heterozygote. - **™**MM=melanic - → Mm=melanic - ⇒mm=typical # Demonstration of Selection Clarke and Sheppard (1966) experiment | Phenotype: | Melanic | | Typical | | |--------------------|---------|----------|---------|----------| | Environment | Exposed | Survived | Exposed | Survived | | Dark
Background | 70 | 58 | 70 | 39 | | Pale
Background | 40 | 24 | 40 | 32 | ### Sample Selection Problem - Tadpoles with large tails are more effective at resisting predation than tadpoles with short tails. Let's imagine that large tails are due to a homozygous recessive genotype, B₂B₂. - 1. Imagine an initial starting population is in Hardy-Weinberg equilibrium and the large-tailed tadpoles represent only 1% of the population. What is the frequency, p, of B₁ in the population (assume only 2 alleles exist)? - → (A) 0.1 - **→** (B) 0.2 - (C) 0.5 - (D) 0.9 - **→** (E) 0.99 ### Sample Selection Problem - → Tadpoles with large tails are more effective at resisting predation than tadpoles with short tails. Let's imagine that large tails are due to a homozygous recessive genotype, B₂B₂. - 1. A predator is introduced to the pond containing this species of tadpoles, and small-tailed individuals are at a severe disadvantage. The selection coefficient against small-tailed tadpoles is 0.9! What change in p will be predicted in one generation as a result of this strong selection? - (A) 0.9000 - → (B) 0.8257 - → (C) 0.6333 - **(**D) 0.0743 - → (E) 0 ### Sample Selection Problem - Tadpoles with large tails are more effective at resisting predation than tadpoles with short tails. Let's imagine that large tails are due to a homozygous recessive genotype, B₂B₂. - 3. If the predator stays in the pond and continually acts as a selective force, what will the eventual frequency of B₂ be? - → (A) 0 - (B) it will approach 0, but not actually reach it - **→** (C) 1 - (D) it will approach 1, but not actually reach it - **→** (E) 0.5 # Yet Another Sample Problem – Try It On Your Own! 1. A new allele (A₂) is produced via mutation in a bald eagle population that improves the visual acuity of the bird's eye because the delta crystallin form has better light transmission properties. Heterozygotes (A₁A₂) can see better (and therefore hunt for fish more effectively) than A₁A₁ homozygotes and A₂A₂ homozygotes have the best acuity. Which 'case' of selection is this? # Part 2 of Sample Prob 2 ■2. Over many generations, what would be the outcome of selection in this one gene, two allele system? # Part 3 of Sample Prob 2 →3. Which condition in humans most closely resembles the selection that would occur in eagles?