

		Thenotype	Fitness	Selection coefficient
5	A_1A_1	★ Purple	w ₁₁	s ₁₁
	A_1A_2 A_2A_2	Pink	1	0
	A_2A_2	★ White	w ₂₂	s ₂₂

What will happen?					
Case	Genotype	Phenotype	Fitness	Selection coefficient	
5	A ₁ A ₁	Purple	w ₁₁	s ₁₁	
	A_1A_2	Pink	1	0	
	A_2A_2	White	w ₂₂	s ₂₂	
(B) p v (C) p v (D) p v	vill decrease, a vill reach an eo vill increase, a	resulting in fix and approach (quilibrium bet approaching 1 a esulting in fixa) asymptotic ween 0 and asymptotica	1	

Case 5 - Heterozygote superiority With heterozygote superiority, what is the eventual equilibrium p?

Case	Genotype	Phenotype	Absolute	Oddly	
			fitness	relativized fitness*	
6	A_1A_1	Purple	W ₁₁	w ₁₁ '=1+s' ₁₁	
	$\begin{vmatrix} A_1A_1 \\ A_1A_2 \end{vmatrix}$	Fink	W ₁₂	1	
			(lowest)		
	A ₂ A ₂	White	W ₂₂	w' ₂₂ =1+s' ₂₂	
(A)p will decrease, resulting in fixation of A ₂					
(B) p will decrease, and approach 0 asymptotically					
(C) p will reach an equilibrium between 0 and 1					

Real world selection

- →Does evolution follow the pattern predicted by the selection equation in the real world?
- →Most famous example: *Biston betularia* peppered moth, of Britain, studied by H. B. D. Kettlewell.

Genetics of Melanism

- One gene, two alleles. M dominant over m. M produces dark pigmentation in dominant homozygote and heterozygote.
- **™**MM=melanic
- → Mm=melanic
- ⇒mm=typical

Demonstration of Selection

Clarke and Sheppard (1966) experiment

Phenotype:	Melanic		Typical	
Environment	Exposed	Survived	Exposed	Survived
Dark Background	70	58	70	39
Pale Background	40	24	40	32

Sample Selection Problem

- Tadpoles with large tails are more effective at resisting predation than tadpoles with short tails. Let's imagine that large tails are due to a homozygous recessive genotype, B₂B₂.
- 1. Imagine an initial starting population is in Hardy-Weinberg equilibrium and the large-tailed tadpoles represent only 1% of the population. What is the frequency, p, of B₁ in the population (assume only 2 alleles exist)?
- → (A) 0.1
- **→** (B) 0.2
- (C) 0.5
- (D) 0.9
- **→** (E) 0.99

Sample Selection Problem

- → Tadpoles with large tails are more effective at resisting predation than tadpoles with short tails. Let's imagine that large tails are due to a homozygous recessive genotype, B₂B₂.
- 1. A predator is introduced to the pond containing this species of tadpoles, and small-tailed individuals are at a severe disadvantage. The selection coefficient against small-tailed tadpoles is 0.9! What change in p will be predicted in one generation as a result of this strong selection?
- (A) 0.9000
- → (B) 0.8257
- → (C) 0.6333
- **(**D) 0.0743
- → (E) 0

Sample Selection Problem

- Tadpoles with large tails are more effective at resisting predation than tadpoles with short tails. Let's imagine that large tails are due to a homozygous recessive genotype, B₂B₂.
- 3. If the predator stays in the pond and continually acts as a selective force, what will the eventual frequency of B₂ be?
- → (A) 0
- (B) it will approach 0, but not actually reach it
- **→** (C) 1
- (D) it will approach 1, but not actually reach it
- **→** (E) 0.5

Yet Another Sample Problem – Try It On Your Own!

1. A new allele (A₂) is produced via mutation in a bald eagle population that improves the visual acuity of the bird's eye because the delta crystallin form has better light transmission properties. Heterozygotes (A₁A₂) can see better (and therefore hunt for fish more effectively) than A₁A₁ homozygotes and A₂A₂ homozygotes have the best acuity. Which 'case' of selection is this?

Part 2 of Sample Prob 2

■2. Over many generations, what would be the outcome of selection in this one gene, two allele system?

Part 3 of Sample Prob 2

→3. Which condition in humans most closely resembles the selection that would occur in eagles?

