Lecture 16

Model development Six Cases: 1 gene, 2 allele model With exciting real-world examples! Article 15

Model of selection

™Likewise,

➡We now have the numerator, and continuing in like fashion, we derive the denominator (=all alleles)

Selection model is deterministic (unlike drift), predicting specific allele frequency changes

The Selection Equation $ \frac{\left(\frac{w_{1 p_{1}^{2}+w_{12}p_{1}q_{1}}}{w_{11}p_{1}^{2}+2w_{12}p_{1}q_{1}}+w_{22}q_{1}^{2}\right)}{\left(\frac{w_{11}p_{1}^{2}+2w_{12}p_{1}q_{1}}{w_{11}p_{1}^{2}+2w_{12}p_{1}q_{1}}+w_{22}q_{1}^{2}\right)} $						
Case	Genotype	Phenotype	Fitness			
1	A ₁ A ₁	Purple	1			
	A ₁ A ₂	Pink	1			
	A ₂ A ₂	White	1			
L	1			1		

1	Case 2: Selection against dominant What will happen?						
	Case Genotype Phenotype Fitness						
	2	A ₁ A ₁	🛧 Purple	w ₁₁ =w ₁₂ <1			
		A ₁ A ₂	🖈 Purple	w ₁₂ =w ₁₁ <1			
		A ₂ A ₂	White	1			
	(A) p wil (B) p wil (C) p wil (D) p wil (E) p wil	l decrease, re: l decrease, an l reach an equ l increase, ap l increase, res	sulting in fixation d approach 0 as nilibrium between proaching 1 asy sulting in fixatio	on of A_2 symptotically en 0 and 1 mptotically n of A_1	·		

How do we determine the outcome? →Which allele will increase? →How 'exposed' is the allele that is declining?

Human Example

- Huntington's Disease dominant gene causes gradual disruption of nerve function
- ➡Why is it still around? Mutation. Effects occur after most reproduction.
- High frequency near Lake Maracaibo; founder effect traced to one early immigrant who bore 10 children!
- http://evolution.berkeley.edu/evolibrary/article/0_0_0/medicine_05

Case 3 - Selection Against the Recessive							
Case	Genotype	Phenotype	Fitness	Selection coefficient			
3	A ₁ A ₁	rple	1	0			
	A ₁ A ₂	rple	1	0			
	A_2A_2	☆ White	w ₂₂ <1	s ₂₂			

Human Example

- Cystic fibrosis (recessive allele in CF gene); most common lethal genetic disease of European and European derived populations!
- Blockages in sweat and mucus glands; leads to respiratory failure, etc.
- → May be still around because (1) recessive lethals are difficult to get rid of when in low proportions, and (2) in the past, the homozygotes may have had an advantage in defense against tuberculosis!
- Read more: http://www.nhlbi.nih.gov/health/dci/ Diseases/cf/cf_what.html

4	Cas	se 4: No arrange	o domination domination	ance - f fitnes	linear ses
I	Case	Genotype	Phenotype	Fitness	Selection coefficient
	4	$\begin{array}{c} A_1A_1\\ A_1A_2\\ A_2A \end{array}$	★ Purple Pink White	w ₁₁ <w<sub>12 w₁₂<1 1</w<sub>	$s_{11} > s_{12}$ s_{12} 0

1	Case 5 - Heterozygote superiority							
	Case	Genotype	Phenotype	Fitness	Selection coefficient			
	5	A ₁ A ₁	★ Purple	w ₁₁	s ₁₁			
		A ₁ A ₂	Pink	1	0			
		A ₂ A ₂	₩ White	w ₂₂	s ₂₂			

C	Cas ase	Genotype	Phenotype	Fitness	Selection coefficient*
	4	$\begin{array}{c} A_1 A_1 \\ A_1 A_2 \end{array}$	Purple ☆ Pink	1 or W ₁₁ W ₁₂ <1 (lowest)	1+s ₁₁ 1
ŀ		A ₂ A ₂	White	1 or W ₂₂	1+s ₂₂

- When (what case?) is the disfavored allele eliminated?
- When does the disfavored allele persist in low frequencies?
- →When is allelic diversity preserved?
- ₩When does initial p, q matter?

Real world selection

- →Does evolution follow the pattern predicted by the selection equation in the real world?
- ➡Most famous example: Biston betularia peppered moth, of Britain, studied by H. B. D. Kettlewell.

Genetics of Melanism

- One gene, two alleles. M dominant over m. M produces dark pigmentation in dominant homozygote and heterozygote.
- ™MM=melanic
- ™→Mm=melanic
- »→mm=typical

Demonstration of Selection Clarke and Sheppard (1966) experiment						
Phenotype:	Phenotype: Melanic Typical					
Environment	Exposed	Survived	Exposed	Survived		
Dark Background	70	58	70	39		
Pale Background	40	24	40	32		

