
Lecture 13 Mutation - Source of Variation Intro to Drift - A Game of Chance *See Article 13. Mutation

Hardy Weinberg Review The H-W Law predicts genotype frequencies (t+1) from allele frequencies (t) Combined with the relationship between allele and genotype frequencies within generations, we can solve ALL H-W problems. Time t Allele Frequency | Combined with the relationship between allele and genotype frequencies within generations, we can solve ALL H-W problems.

•	Factors That <u>Drive</u> Change in Allele Frequency
	→ 1
	→ 2
	→3
	→ 4

Fun Facts About Mutation in Us!

- Each of us is born with 300 new mutations that make us different from our parents
- At least 4500 human genetic defects have been found that cause inherited disease
- →In 500,000 humans, there will be 800,000 mutations each generation

Mutation

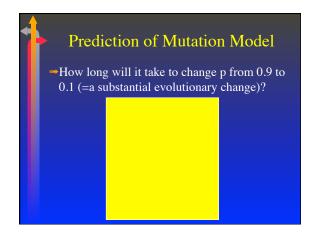
- New alleles arise by mutation
- →Mutation is change in the nucleotide sequence of DNA

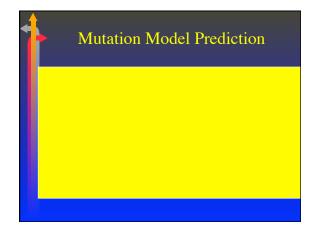
Mutation

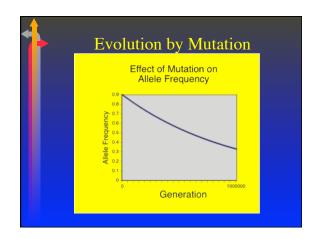
- Mutation may involve alteration of
 - →1 base pair
 - →Several bases
 - →Part of the chromosome
 - →Whole chromosomes

Causes of Mutations

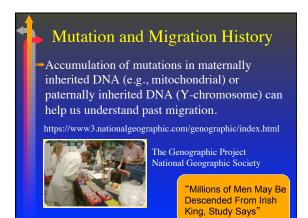
- Errors in DNA replication
- →Physical chromosome damage
- ■Insertion of transposable element
- **■**UV radiation
- Radiation at other wavelengths (gamma, x-ray)
- Chemicals of various sorts

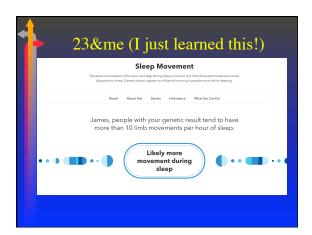

Source of Exposure	Dose		
Dental X-ray	0.005 mSv*		
135g bag of Brazil nuts	0.005 mSv		
Chest X-ray	0.02 mSv		
Transatlantic flight	0.07 mSv		
Nuclear power station worker average annual occupational exposure 0.18 mSv			
UK annual average radon dose	1.3 mSv		
CT scan of the head	1.4 mSv		
UK average annual radiation dose	2.7 mSv		
USA average annual radiation dose	6.2 mSv		
CT scan of the chest	6.6 mSv		
Average annual radon dose to people in Cornwall	7.8 mSv		
Whole body CT scan	10 mSv		
Annual exposure limit for nuclear industry employees	20 mSv		
Level at which changes in blood cells can be readily observed	100 mSv		
Acute radiation effects including nausea and a reduction in white blood cell count			
	1000 mSv		
Dose of radiation which would kill about half of those receiving it in a month			
	5000 mSv		




Definitions

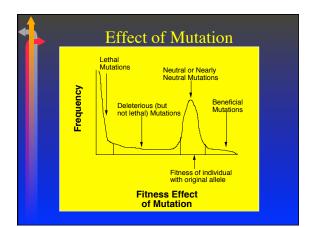
- Haplotype a particular DNA sequence that differs from homologous sequences by one or more mutations
- Genetic markers specific mutations geneticists use to recognize certain genes or genetic 'lines'





Molecular Clocks

- Slow accumulation of neutral mutations allows us to establish a biological clock.
- Knowing the rate of substitution of DNA base pairs within genes, we can estimate times since two lineages diverged, and reconstruct phylogenies.



1

Effect of Mutation

- Constant level of mutation produces very slow change in allele frequency, assuming these changes are neutral (do not affect fitness)
- → Mutation is evolutionarily important as a **SOURCE OF VARIATION.**

Mutation Summary

- Mutation produces slow evolutionary change
- Mutations are largely neutral or detrimental
- → Mutation is a source of variation
- → Steady mutational forces allow us to gauge time since divergence of lineages with a "molecular clock"
- → Mutational legacies allow us to trace migration pathways by using unique marker genes

Next Lecture

Genetic drift - random genetic change in small populations

	١