
F. Reaction mechanisms and rate laws.

The reaction mechanism is the sequence of steps that define the path from reactants to products. Each step is an elementary reaction, a reaction involving 1 (unimolecular), 2 (bimolecular), or, at most, 3 (termolecular) molecules. The sum of all elementary steps is the overall reaction. Any species which appears in an elementary reaction but not the overall reaction is a reaction intermediate.

Ex. Mechanism for the decomposition of nitrous oxide (laughing gas).

Overall reaction: \(2N_2O(g) \rightarrow 2N_2(g) + O_2(g) \)

Reaction mechanism:

1. \(N_2O(g) \rightarrow N_2(g) + O(g) \) (unimolecular step)
2. \(N_2O(g) + O(g) \rightarrow N_2(g) + O_2(g) \) (bimolecular step)

O(g) (atomic oxygen) is a reaction intermediate.

The overall rate law can be deduced from the reaction mechanism. The rate law for an elementary reaction follows directly from the equation (see Table 12.5 of M&F):

Rate law for step (1): Rate = \(k_1[N_2O] \)
Rate law for step (2): Rate = \(k_2[N_2O][O] \)

If the reaction mechanism contains a single step, then the overall rate law and the elementary rate law are identical.

Ex. Rearrangement of methyl isonitrile: \(\text{CH}_3\text{-N}=\text{C}(g) \rightarrow \text{CH}_3\text{-C}=\text{N}(g) \)
Rate = \(k[\text{CH}_3\text{-N}=\text{C}] \)

If the reaction mechanism contains two or more steps, one step (the rate-determining step) is often much slower than the other steps. The rate-determining step controls the overall rate of the reaction. The overall rate law will contain only those substances that are involved up to and including the rate-determining step.

Ex. What is the rate law for the following mechanism?

\[
\begin{align*}
(1) & \quad A + B \rightarrow AB \quad \text{(slow)} \\
(2) & \quad AB + A \rightarrow C + D \quad \text{(fast)}
\end{align*}
\]
Overall: \(2A + B \rightarrow C + D \)
The 1st step is rate-determining. The overall rate law is: rate = \(k[A][B] \)

What is step (2) is rate-determining? Then the rate law includes all reactants: rate = \(k[A]^2[B] \)

Usually the overall rate law is determined experimentally, and a possible reaction mechanism is deduced from the rate law.

Ex. (Nakon, 16-8) Overall reaction is: \(2A + B \rightarrow C + D \). The rate law is: rate = \(k[A]^2 \).

Write a possible mechanism.

The easiest approach is to let the 1st step be rate-determining.

\[
\begin{align*}
(1) & \quad A + A \rightarrow A_2 \quad \text{(slow)} \\
(2) & \quad A_2 + B \rightarrow C + D \quad \text{(fast)}
\end{align*}
\]

G. The Arrhenius Equation.

Everyday experience shows that reaction rates increase with temperature (Ex. reduced cooking times in a pressure cooker, increased cooking times at high altitudes, due to changes in b.p. of water). Thus, the rate constant \(k \) must depend on temperature.

Arrhenius proposed that all rate constants obey the following general equation:

\[k = A \exp(-E_a/RT) \]

\(E_a \) is the activation energy, \(A \) is a constant.

This equation is predicted by collision theory. The 3 basic elements of collision theory are:

(a) Molecules must collide to weaken bonds and reach an activated complex (a species between reactants and products).

Ex. \(A + B \rightarrow (A--B)^* \rightarrow A + B \)

(b) The energy required to reach the activated complex is \(E_a \).

(c) The tiny fraction of collisions with sufficient energy to reach the activated complex is given by \(\exp(-E_a/RT) \), which is the major source of temperature dependence.

Elements (a) and (b) are often represented in a potential energy profile (plot of potential energy vs reaction progress); see Fig. 12.13 of M&F.

We can relate \(E_a \) to the temperature-dependence of rate constants and rates using a variation of the Arrhenius equation.

\[
\log(k_2/k_1) = (-E_a/(2.303R)((1/T_2) - (1/T_1))) \quad \text{(temperatures in Kelvin; } R = 8.314 \text{ J/K·mol)}
\]

Ex. Rates for decomposition of \(N_2O_5(g) \) are \(3.7 \times 10^{-5}/s \) at \(25^\circ C \) and \(1.7 \times 10^{-3}/s \) at \(55^\circ C \). What is \(E_a \)? What is the rate at \(35^\circ C \)?
IMPORTANT: convert all temperatures to Kelvin: 25°C → 298K; 55°C → 328K; 35°C → 308K

\[
\log(1.7 \times 10^{-3}/3.7 \times 10^{-5}) = \log(46) = 1.66 = \frac{-E_a}{(2.303)(8.314)}((1/328)-(1/298))
\]

\[E_a = 1.66/1.6 \times 10^{-5} = 1.0 \times 10^5 \text{ J/mol} \times 1 \text{ kJ/1000 J} = 100 \text{ kJ/mol} \text{ (2 sig. fig.)}
\]

\[
\log(k_2/3.7 \times 10^{-5}) = (-5.2 \times 10^3/19.15)((1/308)-(1/298)) = (-5.2 \times 10^3)(-1.1 \times 10^{-4}) = +0.57
\]

\[k_2/3.7 \times 10^{-5} = 10^{0.57} = 3.7; \quad k_2 = (3.7)(3.7 \times 10^{-5}) = 1.4 \times 10^{-4}/s
\]

(Note the use of log and antilog base 10, the use of J/mol, NOT kJ/mol, as the units of \(E_a\), and the loss of significant figures on subtraction)

H. Catalysis.

A catalyst increases the rate of the reaction without being consumed in the reaction.

Ex. The decomposition of hydrogen peroxide is catalyzed by many substances, such as \(\text{MnO}_2(s)\):

\[
\text{MnO}_2 + 2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2(g)
\]

(a very exothermic reaction)

The catalyst changes the mechanism of the reaction. It usually provides a path with a lower \(E_a\) (see Fig. 12.16 of M&F). The catalyst usually appears in the rate law. Homogeneous catalysts exist in the same phase as the reaction. Heterogeneous catalysts exist in a different phase (e.g., \(\text{MnO}_2(s)\) in the liquid phase reaction above). The importance of catalysts in natural and industrial chemistry is too great to describe here; see M&F for examples.