• Encloses spinal cord, (dorsal aorta)
• Site of muscle attachment
• Suspendes body - tetrapods

Somites
• Somites –
 – Dermatome
 – Sclerotome
 – Myotome

Vertebral structure
• Neural (Vertebral)arch
• Hemal arch
• Neural, hemal spines

Most vertebrates have centra that unite with arches
Amphicoelous
- Pad of notochord bw vertebrae
 - compression and bulging
 - dislocation

Opisthocoelous, Procoelous
- Articulate in ball and socket fashion
 - Intervertebral pad is ossified
 - Nerve cord bending

Acoelous
- Centra are flattened
 - Intervertebral disks, notochord

Heterocoelous
- Interlocking ‘saddle’ shapes
 - Twisting prevented, yet flexible
Vertebral development

Ribs and sternum

- Dorsal ribs, ventral ribs

- Diapophysis, parapophysis

Ribs meet ventrally at sternum for many tetrapods (mostly amniotes)
- Lung ventilation

Fig. 8.3

Fig. 8.6
Ribs and sternum

- True ribs
- False ribs
- Floating rib

Fish

- Lateral forces, compression, dislocation
- Extended neural, hemal arches
- Trunk vs. tail vertebrae

Tetrapod forces

- Land not level - need dorsal-ventral flexion
- Lateral flexion for some vertebrates

Vertebrae experience torsion forces
Zygapophyses

- Tetrapods – resists torsion forces

Fish vs. tetrapods: regionalization

Amphibian regionalization

- 1: Atlas - ringlike
- 2: Axis - odontoid process extends forward into atlas

Amniote cervical region

No zygapophyses
Changes to regionalization
Amniotes have atlas, axis and other cervical

Mammal regionalization
• Cervical, thoracic, lumbar, sacral, caudal
 – Lumbar vs. thoracic

• Comparing relative lengths of lumbar area

• Comparing length and broadness of neural spines
Modifying tetrapods to be aquatic

- Cervical vertebrae
- Zygaphyses
- Hemal arch

Turtle rib modification

Bird axial modifications

Tradeoff of strength and flexibility