Endocrine glands - ductless
• Hormones released to circulation
 – Specific to target tissues

Neural control

Endocrine control

Pituitary (hypophysis) - vertebrates
• Neurohypophysis (posterior) - from the floor of brain (infundibulum)
• Adenohypophysis (anterior) from pocket of embryonic mouth cavity
• **ADH** - Anti-diuretic hormone
 – increased permeability in collecting ducts

• **Oxytocin** - (mammals)
 – uterine contractions, milk ejection
Reproductive hormones

Adenohypophysis -
- LH - Lutenizing hormone
- FSH - Follicle-stimulating hormone
- Prolactin - mammary glands, behavior

Neurohypophysis
- Oxytocin

Looking within the ovary...

Primary follicle

FSH - causes follicle to mature, grow
Follicle cells secrete estrogen

Estrogen

- Estrogen promotes development of endometrium

- promotes LH release when estrogen is high – positive feedback
Induced ovulators

- LH not promoted by estrogen
- Act of breeding stimulates pituitary gland to release LH

 - Llamas: Levels of LH in the blood begin to rise 15 minutes after the beginning of breeding.

Fertilization

If fertilization: blastocyst \rightarrow chorionic gonadotropin which maintains c. luteum

Eventually, placenta takes over

Progesterone and estrogen also inhibit FSH, LH and prepare mammary glands

At birth, decreased levels of progesterone promotes oxytocin, prolactin
• Feedback from mammarys
 – Stimulates prolactin release
 – Inhibits GnRH and FSH

Marsupials

• Suckling feedback allows for embryonic diapause
 – Mother has blastocyst, yet prolactin inhibits corpus luteum, thus progesterone

Marsupials

• After weaning (or young dies), suckling decreases, blastocyst can implant

Marsupials - most development during lactation
 – Easier to terminate parental care

Placentals cannot readily terminate