Chem 233: Problem Set #11 (on Chapter 11)

1. Name or draw structures for the following:

 A. acetylene

 \[\text{H}_2\text{C} = \text{C} = \text{H} \]

 B. \[\text{H} \]

 C. \[\text{H}_3\text{C} - \text{C} \equiv \text{C} - \text{CH}_3 \]

 D. ethylene

 \[\text{H}_2\text{C} = \text{C} = \text{H} \]

 E. 1, 5-dibromo-2-pentyne

 F. dimethylacetylene

 \[\text{H} \]

 G. \[\equiv \equiv \equiv \text{Br} \]

 H. \[\text{H} \]

2. Draw the keto form for the following enol tautomers.

 A. \[\text{H} \]

 B. \[\text{H}_2\text{C} = \text{C} = \text{H} \]

 C. \[\text{H}_3\text{C} - \text{C} \equiv \text{C} - \text{CH}_3 \]

3. Show the step-by-step mechanism for the acid catalyzed conversion of the enol tautomer in 2B to the keto tautomer.
4. Give the **reagents needed or the major organic product(s)** for the following reactions.

 A. \[
 \begin{array}{c}
 \text{HC} &=& \text{C} \\
 \text{CH}_3 &=& \text{Br}_2 (2 \text{ eq.}) \\
 \text{CH}_2\text{Cl}_2 \\
 \text{HC} &=& \text{C} \\
 \text{CH}_3 &=& \text{Br}_2 (2 \text{ eq.}) \\
 \text{CH}_2\text{Cl}_2 \\
 \end{array}
 \]

 B. \[
 \begin{array}{c}
 \text{H}_3\text{C} &=& \text{C} \\
 \text{C} &=& \text{H} \\
 \text{CH}_3 \\
 \text{H}_3\text{C} &=& \text{C} \\
 \text{C} &=& \text{CH}_3 \\
 \end{array}
 \]

 C. \[
 \begin{array}{c}
 \text{HC} &=& \text{C} \\
 \text{CH}_3 &=& \text{Cl}_2 (1 \text{ eq.}) \\
 \text{CH}_2\text{Cl}_2 \\
 \text{HC} &=& \text{C} \\
 \text{CH}_3 &=& \text{Cl}_2 (1 \text{ eq.}) \\
 \text{CH}_2\text{Cl}_2 \\
 \end{array}
 \]

 D. \[
 \begin{array}{c}
 \text{HC} &=& \text{C} \\
 \text{C} &=& \text{CH}_3 \\
 \text{HgSO}_4, \text{H}_2\text{SO}_4 \\
 \text{H}_2\text{O} \\
 \end{array}
 \]

 E. \[
 \begin{array}{c}
 \text{HC} &=& \text{C} \\
 \text{C} &=& \text{CH}_3 \\
 \text{Br} \\
 \end{array}
 \]

 F. \[
 \begin{array}{c}
 \text{H}_2\text{C} &=& \text{C} \\
 \text{C} &=& \text{H} \\
 \text{CH}_3 \\
 \text{H}_2/\text{Pd} \\
 \end{array}
 \]

 G. \[
 \begin{array}{c}
 \text{H}_3\text{C} &=& \text{C} \\
 \text{C} &=& \text{C} \\
 \text{CH}_3 &=& \text{HCl} \\
 \text{ether} \\
 \text{CH}_3 \\
 \end{array}
 \]

 H. \[
 \begin{array}{c}
 \text{H}_3\text{C} &=& \text{C} \\
 \text{CH}_4 &=& \text{H} \\
 \text{NaNH}_2, \text{NH}_3 \\
 \text{CH}_3\text{CH}_2\text{I} \\
 \end{array}
 \]

 I. \[
 \begin{array}{c}
 \text{H}_3\text{C} &=& \text{C} \\
 \text{C} &=& \text{H} \\
 \text{CH}_3 \\
 \end{array}
 \]

 J. \[
 \begin{array}{c}
 \text{HC} &=& \text{C} \\
 \text{C} &=& \text{H} \\
 \text{HgSO}_4, \text{H}_2\text{SO}_4 \\
 \text{H}_2\text{O} \\
 \end{array}
 \]

 K. \[
 \begin{array}{c}
 \text{HC} &=& \text{C} \\
 \text{C} &=& \text{H} \\
 \text{CH}_3 \\
 \text{1. BH}_3 \text{ in THF} \\
 \text{2. H}_2\text{O}, \text{OH}^* \\
 \end{array}
 \]

 L. \[
 \begin{array}{c}
 \text{HC} &=& \text{C} \\
 \text{C} &=& \text{CH}_3 \\
 \text{Br} \\
 \text{1. NaNH}_2, \text{NH}_3 \\
 \text{2. (CH}_3)_3\text{CCH}_2\text{CH}_2\text{Br} \\
 \end{array}
 \]

5. **Show step-by-step mechanisms for the reactions given in question 4C, 4E, and 4H.**

6. **Use the mechanism is 4C to explain why only the trans product is formed.**

7. **Use the mechanism in 4E to explain why very little (if any) of the rearranged product 2,3-dibromo-2,3-dimethylbutane is formed.**
8. Give a correct synthesis route for the following:

A. from \(\text{HC} = \text{CH} \)

B. from \(\text{HC} = \text{CH} \)

C. from \(\text{HC} = \text{CH} \)

D. from \(\text{HC} = \text{C} \rightarrow \text{CH}_3 \)

E. from \(\text{HC} = \text{CH} \)

F. from \(\text{HC} = \text{CH} \)
9. An organic molecule has the chemical formula \(\text{C}_{19}\text{H}_{16} \). This molecule reacts with two equivalents of \(\text{H}_2 \) over Lindlar’s catalyst, after which it reacts with 7 equivalents of \(\text{H}_2 \) over a \(\text{PtO}_2 \) catalyst.

A. How many degrees of unsaturation are present in \(\text{C}_{19}\text{H}_{16} \)?
B. How many triple bonds are present?
C. How many double bonds are present?
D. How many rings are present?
E. Draw a structure that fits the results.