Degree of unsaturation:
\[\frac{\# H^5 \text{ if sat} - \# H^5}{2} = \frac{(2n+2)-\# H^5}{2} \]

A.
1. Degree of unsat = \((2n+2) - \frac{14}{2} \) from \(\text{C}_6\text{H}_{14}\text{O} \)
2. No unsaturation + one \(\equiv\text{O} \rightarrow \text{alcohol or ether}\)
3. No broad \(\text{H} \) NMR due to alcohol or ether
4. 2 \(\text{H} \) NMRs; 2 types \(\text{H} \)

B.
1. Degree of unsat = \(14 - \frac{14}{2} = 0 \) from \(\text{C}_6\text{H}_{14}\text{O} \)
2. No unsat + one \(\equiv\text{O} \rightarrow \text{alcohol or ether}\)
3. No broad \(\text{OH} \) peak \(\rightarrow \text{ether}\)
4. Splitting = 4 \(\text{CH}_3 \) next + \(\text{CH}_3 \)
C.
1. Degree of unsat = $\frac{10+10}{2} = 10$
2. 1° doublet \rightarrow aldehyde or ketone
3. Broad δ at ≈ 1.65 ppm \rightarrow alcohol
4. 4 different 1H peaks

D.
1. Degree of unsat = $\frac{20-10}{2} = 5$
2. Benzene ring indicated by unsat (4 doublets)
3. 2° doublet and 1 degree of unsat (broad)
 but no $1H$ peaks are indicated

E.
1. Degree of unsat = $\frac{14+6}{2} = 10$
2. Alcohol \rightarrow broad $1H$ NMR at 5 ppm

Chemical Structures:

- **C$_4$H$_8$O:**
 - Degree of unsat = ϕ
 - 1° doublet \rightarrow aldehyde or ketone
 - Broad δ at ≈ 1.65 ppm \rightarrow alcohol
 - 4 different 1H peaks

- **C$_9$H$_{10}$O$_2$:**
 - Degree of unsat = 5
 - Benzene ring indicated by unsat (4 doublets)
 - 2° doublet and 1 degree of unsat (broad)

- **C$_9$H$_{10}$NO:**
 - Degree of unsat = 10
 - Alcohol \rightarrow broad $1H$ NMR at 5 ppm
1. Degree of unsat = $\frac{18-10}{2} = 4$ - Indicates benzene ring.

2. No splitting of peak at ~1.2 ppm thus ring is substituted by a H3 group which does not change environment of any Hs enough to cause them to be different.

3. Degree of unsat = $\frac{9-8}{2} = 0.5$ - Indicate that this has Br bonded to C.

4. 3 different H peaks thus position indicates Br must be on terminal C. - Br bonded to C.

Because $H(C=O)$ would give 2 peaks.
1. Degree of unsat = 18 - 10 = 8 \rightarrow \text{Benzen}

2. No unsat left \rightarrow \text{alcohol or ether}

3. Broad peak at \approx 3.5 \text{ ppm} \rightarrow \text{OH}

(a) \ce{C_8H_{10}O}

- Peak a: next to CH
- Peak b: decoupled OH
- Peak c: next to CH_3

(b) \ce{C_8H_{10}O}

- Peak a: OH peak
- Peak b: next to CH
- Peak c: next to CH_3

(c) \ce{C_8H_{10}O}

- Peak a: unsplit singlet
- Peak b: 2:3

Aglycone probably monosubstituted

(A) \text{OH peak and next to CH}

1. Degree of unsat = 18 - 10 = 8 \rightarrow \text{Benzen}

2. No broad-\text{OH peak} \rightarrow \text{ether}

\text{Aglycone probably monosubstituted}
13C NMR of CyH_{10}O

1. Degree of unsat = \(\frac{10}{2} = 5 \)

2. 2 types of C only

This compound could be either t-butanol or diethyl ether. More data (1H NMR or IR spectra) would be needed to decide.