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Abstract 
 The hypotheses that PKCepsilon is necessary for: 1) PGF2alpha to inhibit LH-stimulated 

progesterone (P4) secretion, and 2) for the expression of key prostaglandin synthesizing / 

metabolizing enzymes were tested in bovine luteal cells in which PKCepsilon expression had been 

ablated using a validated siRNA protocol. Steroidogenic cells from Day -6 bovine corpus luteum 

(CL) were isolated and transfected to reduce PKCepsilon expression after 48, 72 and 96 h. A third 

tested hypothesis was that an increase in intracellular calcium concentration ([Ca(2+)]i) is the 

cellular mechanism through which PGF2alpha inhibits luteal progesterone. The hypothesis was 

tested with two pharmacological agents. In the first test, the dose-dependent effects on raising the 

[Ca(2+)]i with the ionophore, A23187, on basal and LH-stimulated P4 secretion in cells collected 

from early (Day -4) and mid-cycle (Day -10) bovine CL was examined. In the second test, the 

ability of PGF2alpha to inhibit LH-stimulated P4 secretion in Day-10 luteal cells was examined 

under conditions in which an elevation in [Ca(2+)]i had been buffered by means of the intracellular 

calcium chelator, Bapta-AM. 

PKCepsilon expression was reduced 65 and 75% by 72 and 96 h after transfection, respectively. 

In cells in which PKCepsilon expression was ablated by 75%, the inhibitory effect of PGF2alpha on 

LH-stimulated P4 secretion was only 29% lower than in the LH-stimulated group. In contrast, it was 

reduced by 75% in the group where PKCepsilon expression had not been reduced (P < 0.05). Real 

time PCR analysis indicated that there were no differences in the expression of cyclooxygenase-2 

(COX-2), aldoketoreductase 1B5 (AKR1B5), prostaglandin E synthase (PGES), 

hydroxyprostaglandin-15 dehydrogenase (PGDH) and PGE2 -9-reductase as a function of 

PKCepsilon down-regulation. Finally, LH stimulated secretion of P4 at each luteal stage (Day -4 

and -10), and PGF2alpha inhibited this only in Day -10 cells (P < 0.05). When A23187 was used at 

concentrations greater than 0.1 µmol, the induced elevation in [Ca(2+)]i inhibited the effect of LH 

on secretion of P4 in Day -4 and -10 cells (P < 0.05, Fig. 5). The inhibitory effect of PGF2alpha on 

LH-stimulated P4 in Day -10 cells was reduced if an increase in [Ca(2+)]i was prevented with 

Bapta-AM. These results support the hypothesis that differential expression of PKCepsilon and an 

elevation of [Ca(2+)]i are important for acquisition of luteolytic response to PGF2alpha. 
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Background 

The corpus luteum (CL) is a transient endocrine gland whose primary secretory product is 

progesterone (P4). The life span of the CL and consequently the amount of P4 it secretes is 

regulated according to reproductive physiological status. Substances reducing P4 secretion and 

shortening the luteal life span are said to be luteolytic [1, 2]. 

In most species, including human beings, PGF2α is recognized as an important if not the 

main luteolytic factor [3-9]. During the ovarian cycle, the transition from early to mid-luteal phase 

is associated with changes in resistance / susceptibility to the luteolysin PGF2α; in cows, the CL is 

resistant to exogenous PGF2α prior to day 5 of the estrous cycle [10-17]. The cellular basis 

controlling luteal function during these physiological transitions, although studied intensely, is 

incompletely understood. 

In steroidogenic cells of the ruminant CL, PGF2α activates its plasma membrane G-protein-

coupled receptor, which in turn activates the membrane-bound phosphoinositide-specific 

phospholipase C (PLC), yielding inositol 1,4,5-trisphosphate (IP3) and diacylglycerol [18]. Indeed, 

in bovine luteal cells, PGF2α stimulated phosphatidylinositol 4,5-biphosphate hydrolysis and 

mobilized intracellular Ca
2+

 [19]. Accordingly, calcium and protein kinase C (PKC) have been 

shown to be the intracellular mediators of PGF2α actions in luteal cells [20]. The regulatory effects 

of intracellular calcium concentration ([Ca
2+

]i) on progesterone might be biphasic as there is also 

evidence for a calcium requirement to support P4 synthesis by bovine luteal cells and LH, a 

luteotrophic hormone, increases IP3, and [Ca
2+

]i in bovine luteal cells and in porcine granulosa cells 

[21-23]. Therefore, there might exist thresholds of [Ca
2+

]i that support or inhibit P4 synthesis.   

Choudhary et al, [17] tested the ability of increasing concentrations of PGF2α to increase the 

[Ca
2+

]i in large (LLC) and small (SLC) bovine luteal cells as function of development. Day-10 

steroidogenic cells were more responsive to PGF2α than Day-4 cell. Response amplitudes and 

number of responding cells were significantly affected by agonist concentration, luteal development 

and cell type. Response amplitudes were greater in LLC than in SLC; responses of maximal 

amplitude were elicited with lower agonist concentrations from Day-10 than from Day -4 cells. 

Furthermore, on Day-10, as concentrations of PGF2α increased, larger percentages of SLC 

responded. Based on those results Choudhary et al proposed that the lower efficacy of PGF2α in the 

early CL was likely related to signal transduction differences associated with the PGF2α receptor at 

those two developmental stages [17].  

    

The array of PKC isozymes expressed in whole bovine CL includes α, βI, βII, ε and µ [24 -

27]; and it has been demonstrated that the amount of PKCε expressed in the Day-10 CL is greater 

than in the Day-4 CL [26]. The latter observation led Sen et al, to propose that differential 

expression of PKCε as a function of development could play a role in the observed transitional 

resistance / susceptibility to PGF2α -induced luteal regression [26, 27]. Sen et al, had further 

hypothesized that regulation of [Ca
2+

]i was a cellular mechanism through which PKCε could 

mediate actions of PGF2α on P4 secretion [27]. Additionally, there is evidence indicating that when 

bovine follicular theca cells are isolated and their luteinization is induced under in vitro tissue 

culture conditions, they express PKCδ [28]. As PKCδ has been reported to play an important role in 

other species such as in rabbits and rodents [29,30], this PKC isozyme might also be important for 

the physiology of the bovine ovary.   

 

Endothelial cells of the bovine CL do not express PKCε, although they do express the other 

PKC isozymes described in the bovine CL [31]. Data obtained with Western blot and 

immunohistological assays indicated that steroidogenic cells are the main source of PKCε in the 

bovine CL [31]. Therefore, in experiment 1, in order to assess the potential physiological role of 
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PKCε, we have used a siRNA strategy to down- regulate the expression of this PKC isozyme in 

luteal steroidogenic cells. In experiment 2, we used the PKCε down-regulated cells to test two 

hypotheses.  Our first working hypothesis was that PKCε expression was necessary for PGF2α to 

inhibit LH-stimulated P4 secretion in vitro. The second working hypothesis was that PKCε was 

necessary for the expression of key genes of prostaglandin synthesis/metabolism that would favor 

PGF2α synthesis; whereas in PKCε down regulated cells, the expression of key genes of 

prostaglandin synthesis/metabolism would be such that synthesis of PGE2 would be favored. 

Finally, in experiment 3, we tested the hypothesis that [Ca
2+

]i is the cellular mechanism through 

which PGF2α inhibits luteal progesterone. We reasoned that if a pharmacological treatment is used 

to increase [Ca
2+

]i, this should inhibit luteal progesterone secretion with equally effectiveness, 

regardless of the developmental stage of the CL. Therefore, we used a pharmacological agent to 

increase [Ca
2+

]i and examine its effects on LH-induced P4 secretion in luteal cells collected from 

early (Day -4) and mid-cycle (Day -10) bovine CL. Furthermore, this hypothesis was also tested by 

using a pharmacological agent to buffer any increase in [Ca
2+

]i and examine, under conditions of 

low [Ca
2+

]i, the anti-steroidogenic effect of PGF2α on LH-induced P4 synthesis/secretion in 

cultures of luteal cells collected from mid-cycle (Day -10) CL.  

 

Methods 
Tissue collection 

Non-lactating beef (experiments 1 and 2) or dairy (experiment 3) cows were observed 

visually for estrus twice daily at approximately 12-h intervals for a minimum of 30 min per 

observation. The day when standing estrus was observed was designated as Day 0 [32]. For 

experiments 1 and 2, the CL from four beef cows on Day-6 of the estrous cycle were collected in 

ice-cold saline and transported to the laboratory for luteal cell dispersion as described below. For 

experiment 3, 14 non-lactating dairy cows were synchronized with 25 mg PGF2α analog 

(Lutalyse®; Pfizer Animal Health., New York, NY) and ovaries on Day -4 (n = 4) or CL on Day -

10 (n = 10) were collected surgically as described below and transported to the laboratory in ice-

cold saline for dissociation and luteal cell enrichment as described below. The surgical procedure 

was performed via supravaginal incision under epidural anesthesia. For the epidural anesthesia, 6-9 

ml 2% lidocaine were administered for cows weighing 450 -700 kg (Butler Company, Columbus, 

OH). After surgery, penicillin (300,000 units) was administered intramuscularly to protect against 

post-surgical infection. The CL or ovary was collected into ice-cold phosphate buffered saline 

(PBS) at pH 7.4 and transported to the laboratory within 15 to 30 min after collection. The Animal 

Care and Use Committee of West Virginia University approved all procedures for these 

experiments (ACUC protocol # 06-0401). 

 

Luteal cell dispersion and purification 

In the laboratory, the CL was dissected free of connective tissue, weighed, placed into cell 

dispersion medium (CDM, M-199 containing 0.1% BSA, 25 mM Hepes, 100 U/ml fungicide), and 

cut into small (about 1 mm
3
) fragments.  The tissue fragments were processed for tissue dissociation 

as previously described [17]. Luteal endothelial cells were separated by a procedure previously 

described [17, 33-35].  Briefly, magnetic tosylactivated beads (Dynal Biotech, Lake Success, NY) 

were used to separate endothelial cells and the non-adherent cells, steroidogenic-enriched luteal 

cells) were collected [33-35]. The cell population designated as steroidogenic cells represented a 

heterogeneous population of cells including fibroblasts, pericytes, lymphoid and possibly few 

endothelial cells not removed by the separation procedure. Cell viability and density were 

determined using Trypan Blue exclusion and a hemocytometer; luteal cell viability was usually 

greater than 96%. 



 5

 

Experiment 1. Validation of siRNA methodology for specifically down-regulating PKCε expression 

in enriched steroidogenic luteal cells. 

Day-6 dissociated luteal steroidogenic cells were cultured overnight at a cell density of 1 X 

10
6
 cells/well in 35 mm 24 - well culture dishes (Corning Inc, Corning NY) containing 1 ml 

Medium 199 supplemented with 5 % fetal calf serum (FCS, GIBCO) at 37°C (95% air, 5% CO2). 

The next day cells were transiently transfected with PKCε -specific siRNA kit (Upstate Cell 

Signaling solutions, Lake Placid NY) using lipofectin 2000 kit (Invitrogen Life Technologies) 

following the procedure recommended by the manufacturer. After transfection for 4 hr, the cultures 

were provided with M199 supplemented with 10 % FCS, and incubated for a total of 48, 72 or 96 

hours. After each of these time points, the cells were collected by adding 2 ml M199 containing 

0.25 % trypsin (GIBCO) to cover the monolayer and leaving the culture dish for about 1 min at 

room temperature. The cells were aspirated and washed one time with M199 containing 5 %FCS 

and once with M199 without FCS. Cells collected from duplicate wells were pooled and the 

efficiency of transfection at 48, 72 and 96 h was analyzed by RT-PCR and Western blot analysis. 

Control groups included cells cultured in presence of M199 alone, M199 and transfecting reagent, 

and cells treated with non-specific siRNA duplex (non-specific siRNA).  

 

Experiment 2. Effects of down-regulating PKCε expression by the siRNA protocol on: A) the 

ability of PGF2α to inhibit the LH-stimulated P4 accumulation, and B) on the expression of key 

genes involved in prostaglandin synthesis and metabolism. 

Hypothesis 1: PKCε is necessary for PGF2α to be able to inhibit P4 secretion. To examine the ability 

of PGF2α (Cayman
 
Chemical, Ann Arbor, MI) to inhibit LH-induced progesterone accumulation, 

the siRNA transfected and control cells (not treated with PKCε siRNA) were treated, after 96 h, 

with100 ng/ml of LH, 1000 ng/ml of PGF2α, or a combination of LH and PGF2 α for 4 hrs. After 

this time, the cell free medium was collected from each treatment and frozen until determination of 

P4 by radioimmunoassay (RIA). The RIA used for measurements of P4 in the culture
 
media has 

been described previously
 
[36]. The standard curve for this RIA ranged from

 
10 pg/ml to 800 pg/ml, 

and the intra- and interassay coefficients
 
of variation were 9.2% and 12.8%, respectively. 

Hypothesis 2: PKCε is necessary for the expression of key prostaglandin biosynthetic/metabolizing 

enzymes. For the real time quantitative determination of gene expression of key prostaglandin 

biosynthetic/metabolizing enzymes in PKCε down-regulated and control (not down-regulated) cells, 

RNA samples were obtained from the cells collected in the experiment described under Hypothesis 

1. The genes examined were: aldoketoredutase 1B5 (AKR1B5), prostaglandin-15 dehydrogenase 

(PGDH), prostaglandin E synthase (PGES), prostaglandin E-2-9-redutase, and cyclooxygenase-2 

(COX-2). Enriched steroidogenic cells were treated with the PKCε siRNA protocol and after 96 h 

of culture the cells were treated with LH (100 ng/ml), PGF2α (1000 ng/ml), or a combination of LH 

and PGF2α for 4 h. The cells were collected by a brief trypsin treatment and total RNA was isolated 

with Trizol reagent according to the manufacturer's instructions (GIBCO). Total RNA was 

quantified spectroscopically at 260 nm and integrity of the RNA was determined by 2 % agarose gel 

electrophoresis. Specific primers were designed by using primer 3 software. The primer sequences 

and their accession numbers are shown in table 1. The single-step RT-PCR was carried out and 

cDNA product for each gene was column purified. Ten-fold serial dilutions of cDNA for each of the 

genes were used as templates to generate standard curves. Total RNA samples were reverse 

transcribed and used as templates in an iQ5 cycler (Bio-Rad Laboratories, Hercules, CA). The 25 µl 

reaction mixture contained 12.5 µl SYBER green mix (Bio-Rad Laboratories), 2 µl cDNA sample, 

2.5 µl each sense and antisense primers (0.5 µmol) and 5.5 µl of RNAse -free H2O.  The standard 

curves of threshold cycle (ct value) versus log starting quantity for the genes of interest were 
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obtained. The conditions used were as follows: inactivation of RT enzyme, 95
o 
C / 3 min; 

denaturation, 95
o 

C / 30 sec; annealing, 55
o 
C / 30 sec; and extension, 72

o 
C / 1 min with 

fluorescence acquisition. The melt-curves were generated from 55° C to 95° C with 0.5
o
 C 

increments in temperature. The melt-curves were observed for presence of single amplification 

product. The slope and intercept values obtained from the standard curve were used to determine 

the starting quantity for each gene using linear regression equation and gene expression for the 

desired gene was normalized using β-actin as the reference gene. 

 

Experiment 3. The working hypothesis was that a rise in [Ca
2+

]i is the cellular mechanism through 

which PGF2α inhibits luteal P4. 

Effect of a pharmacological increase in [Ca
2+

]i on the LH-stimulated P4 synthesis/secretion in 

Day-4 and -10 luteal steroidogenic cells. We predicted that if [Ca
2+

]i is increased by a 

pharmacological treatment, this increase in [Ca
2+

]i should be equally effective in reducing the LH-

stimulated P4 secretion regardless of the developmental stage of the CL. The enriched steroidogenic 

cells (1x 10
5 

cells/well) isolated from Day-10 and Day-4 CL of PGF2α -synchronized non-lactating 

dairy cows were cultured overnight in 15 mm 24 -well culture plates in medium M199 

supplemented with 0.1% BSA and 0.5% FCS. The next morning, the cells were treated in duplicate 

wells for 24 hr with M199 (control), LH (100 ng/ml), PGF2α, (1.0 µg / ml), and a combination of 

LH and PGF2α. The ability of increasing concentrations of the calcium ionophore, A23187 (0.1, 1, 

10, or 100 µmol, (Invitrogen Detection Technologies), to inhibit basal and LH –stimulated P4 

synthesis/secretion was tested in duplicate wells. The medium for the control group contained 0.1 % 

dimethylsufoxide (DMSO, Pierce Rockport, IL), the solvent used for PGF2α and A23187. The cell-

free media were collected and frozen until later measurements of P4 by RIA. The concentrations of 

A23187 used were based on single-cell studies, in which a concentration of 1 µmol A23187 was 

usually effective in increasing [Ca
2+

]i to values comparable to those seen when cells were 

stimulated with PGF2α at a concentration of 1000 ng / ml. The concentration range used of the Ca
2+

 

ionophore should assure a very good probability of eliciting a wide range in increases in [Ca
2+

]i that 

would allow testing its effect on the LH-stimulated P4 synthesis/secretion in Day-4 and -10 

steroidogenic cells. 

If the PGF2α-stimulated increase in [Ca
2+

]i is prevented, PGF2αT will not be able to inhibit P4 

synthesis/secretion. This experiment examined the ability of PGF2α to inhibit LH-stimulated P4 

secretion in Day-10 luteal cells under conditions in which elevations in  [Ca
2+

]i were buffered. This 

was accomplished by testing the effect of 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-teyracetic 

acid tetrakis acetomethyl ester, Bapta-AM (Invitrogen Detection Technologies, Carlsbad, CA), an 

effective pharmacological agent known to buffer changes in  [Ca
2+

]i [37,38]. The concentration 

range chosen, 0.1 to 1000 µmol, was based on preliminary single-cell studies indicating that at the 

concentration of 10 µmol, Bapta-AM effectively prevented the typical increase in [Ca
2+

]i induced 

by PGF2 in luteal steroidogenic cells. The enriched Day-10 steroidogenic cells (1x 10
5 
cells/well) 

isolated as described above were cultured overnight in 15 mm 24 -well culture plates in medium 

M199 supplemented with 0.1% BSA and 0.5% FCS. The next morning, the cells were treated in 

duplicate wells for 24 hr with M199 (control), LH (100 ng/ml), PGF2α, (1.0 µg / ml), and a 

combination of LH and PGF2α with increasing concentration of Bapta-AM (0.1, 1, 10, 100 or 1000 

µmol). The effect of each treatment on basal and LH –stimulated P4 synthesis/secretion was tested 

in duplicate wells. The medium for the control group contained 0.1 % dimethylsufoxide (DMSO, 

Pierce Rockport, IL), the solvent used for PGF2α and Bapta. The cell-free media were collected and 

frozen until later measurements of P4 by RIA. 

 

Semi-quantitative RT-PCR 
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 The time-course effectiveness of the siRNA treatment in down-regulating PKCε mRNA 

expression was determined by a semi-quantitative RT-PCR procedure (RT-PCR, Qiagen, Valencia, 

CA) previously validated and described [24]. In this RT-PCR assay, PKCε expression was 

normalized to the expression of GAPDH as the reference gene. The sequence of the PKCε and 

GAPDH primers were those previously published: [17], sense 5’-

AGCTTGAAGCCCACAGCCTG-3’; antisense 5’-CTTGTGGCCGTTGACCTGATG-3’; and (34), 

sense 5’- TGTTCCAGTATGATTCCACCC-3’; antisense 5’- TGTTCCAGTATGATTCCACCC-3’ 

respectively. The specificity for these primer sets have been documented (17, 24), and confirmed 

here by using the nucleotide database of National Center for Biotechnology Information [39] with 

BLAST software. The RT-PCR assay conditions were as follows: 50 °C for 30 min for reverse 

transcription reaction, 95 °C for 15 min for inactivation of RT enzyme, and then for PCR cycles 

consisted of 95 °C for 50 seconds for denaturing, 58 °C for 30 seconds for annealing, 72 °C for 

1 min for extension and a final extension of 5 min at 72 °C. The RT-PCR products were 

electrophoresed on 2% agarose gel stained with ethidium bromide and viewed using the Fluro-S 

MultiImager (Bio-Rad Laboratories). Data were collected using densitometric analysis of Quantity 

One quantification software package (Version 4, Bio-Rad Laboratories). The intensity of the signal 

corresponding to PKC isozyme was standardized by the corresponding intensity of GAPDH control 

in that sample. 

 

Semi-quantitative Western blots 

Proteins were isolated from cells of siRNA treated and control groups using previously 

described methodology [24]. Details for the semi-quantitative Western blot protocol used here have 

been described elsewhere [26]. Briefly, protein samples (10µg/lane) were resolved on an 8 % 

polyacrylamide gel. The resolved proteins were transferred to polyvinylidene fluoride membrane 

(Biotechnology Systems, Boston, MA). The membranes were treated for immunodetection of the 

proteins of interest. The following primary antibodies were used: a mouse anti-actin monoclonal 

antibody ([used at a dilution of 1:3000 (v/v] Chemichon International, Inc., Temecula, CA); PKC 

isozyme specific (α, βI, βII, ε,) polyclonal antibodies and their antigenic peptides ([antibodies used 

at dilution 1:1000] Gibco, Grand Island, NY). The following horseradish peroxidase-conjugated 

secondary antibodies were used here: anti-rabbit (1:5000, v/v; Amersham Pharmacia Biotech, and 

anti-mouse (1:30,000 v/v; GIBCO). Densitometry of the bands of interest were performed using 

Quantity One quantitation software. The intensity of the signal corresponding to the protein of 

interest was standardized by the corresponding intensity of the actin control in that sample. This 

normalization of data allows an estimate, in a semi quantitative manner, the amount of protein in the 

samples of interest, as described earlier [26].  

 

Statistics 

The statistical software program from Statistical Analysis System, JMP 3.0 was used for 

data analyses [40]. Data were expressed as means ± SEM for all the experiments. One-way 

ANOVA was used to determine effects of different treatments. Tukey – Kramer HSD was used to 

compare the different treatments subgroups. A value of P < 0.05 was considered statistically 

significant. 

 

Results  

Experiment 1 

Culturing steroidogenic cells collected from the Day -6 CL spontaneously induced the 

expression of PKCε (data not shown). Expression of PKCε was induced gradually by the tissue 

culture conditions, and as Day-6 luteal cells were cultured up to 6 days, PKCε expression had been 

spontaneously increased to values comparable to those seen in Day-10 CL (data not shown).  
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Fig. 1A shows a typical result of the time-course siRNA experiments performed. The summarized 

data shown in Fig. 1B indicate that there was a significant (P < 0.05) decrease in the amounts of 

mRNA encoding PKCε after 72 h of transfection (0.36 ± 0.07) compared to the media- treated 

control group (1.03 ± 0.05). Panels A and B in Fig. 1 show that this approach reduced PKCε 

expression 65 and 75 % (0.23 ± 0.04) by 72 and 96 hrs of treatment respectively. This reduction 

was specific because no similar changes were observed in treatments receiving only experimental 

media (Media), receiving non-specific siRNA duplexes (Non-Sp siRNA), or receiving only 

transfection reagents (Transfection reagent, Fig. 1B).  

The effectiveness of the siRNA transfection in reducing protein corresponding to PKCε can 

be seen in the semi-quantitative western blotting (Fig 2A). A visual reduction in protein was 

detected 72 h after transfection (Fig. 2A). However, the semi-quantitative analysis of the data 

indicated that a significant reduction (P < 0.05) in the amount of PKCε protein had not occurred 

until 96 h after transfection. At this time, there was a 50 % reduction in the siRNA -treated group 

(0.39 ± 0.02) compared to control group (0.82 ± 0.07, Media, Fig. 2B). Figure 3 demonstrates the 

specificity of the siRNA transfection in down-regulating the PKCε isozyme. This Western blot was 

carried out for other PKC isozymes, PKCα and PKCβII, and there was no reduction in the amounts 

of these isozyme proteins even at 96 h after transfection with PKCε -specific siRNA; a time by 

which there was significant reduction in PKCε (Fig.2B).  

 

Experiment 2 

Hypothesis 1: Effect of PKCε down-regulation on the ability of PGF2α to decrease the LH-induced 

P4 accumulation. Enriched steroidogenic cells (n = 4) transfected with PKCε siRNA were cultured 

for 96 h and treated with LH, PGF2α, and combination of LH and PGF2α for 4 h. The control group 

included cells treated with the hormones described above, but expressing normal amount of PKCε. 

PKCε down-regulation did not induce a decrease in the amount of P4 accumulation in the LH-

stimulated cells (158.4 ± 18.1) compared to the control (202.4 ± 11.4). As in previous experiments, 

the accumulation of P4 was significantly reduced (P < 0.05) by PGF2α (42.9 ± 2.6) compared to LH 

-treated control group (202.4 ± 11.4). There was no difference in the amounts of accumulated P4 

between PGF2α -treated PKCε  down-regulated cells (34.9 ± 8.1) and control group (42.9 ± 2.6). 

However, the ability of PGF2α to decrease LH-stimulated P4 accumulation was significantly (P < 

0.05) inhibited in the PKC ε down-regulated group, 124.4  ± 7.4 compared to control, 51.4 ± 4.1 

(Fig. 4). 

 

Hypothesis 2: Gene expression of key prostaglandin biosynthetic/metabolizing enzymes in PKCε 

down-regulated cells. Real-time PCR analysis of total RNA for mRNA encoding Cox-2, AKR1B5, 

PGES, PGDH and PGE (2) -9-ketoreductase indicated that there were no significant differences in 

the expression of any of these genes as a functions of PKCε down-regulation, LH or PGF2α 

treatment (data not shown).   

 

Experiment 3 

 A rise in [Ca
2+

]i is the cellular mechanism through which PGF2α inhibits luteal P4. 

Effect of a pharmacological increase in [Ca
2+

]i on the LH-stimulated P4 synthesis/secretion in 

Day-4 and -10 luteal steroidogenic cells. As reported in previous studies [17], basal P4 

accumulation in cells collected form Day -4 CL was significantly lower than in those collected from 

Day -10 (7.6 ± 2.2 and 29.2 ± 1.8 respectively, Fig. 5 A and B). LH significantly increased (P < 

0.05) the luteal progesterone accumulation in both Day- 4 (49.5 ± 16.3) and -10 cells (65.7 ± 3.7). 

This effect of LH was not inhibited by PGF2α in Day- 4 cells (44.6 ± 17.5), whereas it was 

significantly inhibited in Day-10 cells (31 ± 1.9, Fig. 5A and B). When used at 0.1 µmol, A23187 
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did not reduce LH-stimulated P4 accumulation in Day -4 or -10 cells; but at higher concentration 

(1.0 – 100 µmol), it negated the stimulatory effect of LH on P4 (P < 0.05, Fig. 5 A - B). Basal P4 

accumulation in Day -4 and -10 cells was not affected by any concentrations of A23187 tested (Fig. 

5A and B, only 100 µmol A23187 shown).  

 

If the PGF2α-stimulated increase in [Ca
2+

]i is prevented, PGF2αT will not be able to inhibit P4 

secretion. LH significantly increased (P<0.05) the luteal progesterone accumulation in Day- 10 cells 

(64.6 ± 3, Fig. 6). This effect of LH was completely inhibited by PGF2α (21.1 ± 2.1, Fig. 6). 

Importantly, basal P4 accumulation (Fig. 6) was not affected by the Bapta-AM treatment, not even 

the highest concentration used (20.9 ± 4.1). When Bapta-AM was used at 0.1, 1, 10 and 100 µmol 

in combination with LH, the values on P4 accumulation became intermediate between those 

observe for basal and LH alone (Fig. 6); and the stimulatory effect of LH was completely eliminated 

by 1000 µmol Bapta (data not shown). Consequently, the effect of Bapta-AM on the anti-

steroidogenic action of PGF2α could only be tested up to 100 µmol. The inhibitory effect of PGF2α 

on LH-stimulated luteal P4 accumulation was not affected by Bapta when used at concentrations 

not exceeding 1 µmol, as the values for P4 accumulation clearly were not different from those 

observed for basal values (P < 0.05, Fig. 6). However, at 10 and 100 µmol, Bapta-AM effectively 

reduced the ability of PGF2α to inhibit the stimulatory effect of LH on P4 accumulation (Fig. 6).   

 

Discussion 

 The roles of specific PKC isozymes in luteal physiology have received little attention to 

date. As discussed below, these studies were designed to test the effects of ablating PKCε 

expression in order to examine its hypothesized function. Previous studies had indicated that a 

potential function for PKCε might be to regulate quantitatively the intracellular calcium signal 

initiated by PGF2α on one of its luteal targets, the steroidogenic cells. The present studies validate 

the effective and specific down-regulation of PKCε by siRNA technology and provide strong 

evidence about the function of this PKC isozyme in luteal physiology. The data support the overall 

hypothesis that down-regulating expression of PKCε reduces the effectiveness of PGF2α in 

reducing progesterone synthesis/secretion. This observation extends the report that when PKCε was 

inhibited with PKCε -specific inhibitors, the PGF2α- induced rise in [Ca
2+

]i was decreased in LLC 

and SLC and that this in turn had consequences (at least in part) in the ability of PGF2α to inhibit 

LH-stimulated P4 secretion at this developmental stage [27]. As previously reported [17], LH 

induced an increase in the amount of P4 secretion. Interestingly, in the group where PKCε 

expression was down -regulated, the inhibitory effect of PGF2α on LH-stimulated P4 secretion was 

significantly mitigated (Fig. 3). This observation has an important physiological corollary: both 

PGF2α-receptors and PKCε are expressed in the same luteal cell type. Therefore, the isozyme PKCε 

has an important compatible time (mid-luteal phase) and place (small and large luteal steroidogenic 

cells) of expression, for it to have a role in the luteal transition from resistance to sensitivity to 

luteolytic actions of PGF2α. Furthermore, if PKCε expression is down -regulated (this study) or if 

its activation is inhibited [27], the anti-steroidogenic effect of PGF2α on LH-stimulated P4 secretion 

is impaired. 

 Experiment 2 also tested the hypothesis that down-regulating PKCε could influence the 

expression of key PG metabolizing enzymes that, in turn, could influence the balance of PG 

production from luteo-protective or luteotrophic to luteolytic. The mechanism for luteal resistance is 

not exactly known. However there is now evidence that regulation of key PG metabolizing enzymes 

observed during physiological states in which the life span of the CL is modified is likely to play an 

important role in this complex process [41-49]. The selection of the examined genes was based on 

the available evidence that, because of their key positions in the PG biosynthetic pathway, these 
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genes have been shown to determine the accumulation of luteolytic or luteotrophic classes of PG 

[40-45]. For example, we examined the effects of down-regulating PKCε on the expression of PGE2 

and F synthases because of their more direct effect on determining whether PGH2 is metabolized to 

PGE2 or PGF2α. The results obtained were unexpected; the prediction was that because of low 

expression of PKCε, exogenous PGF2α would not be able to induce high increases in the cytosolic 

concentration of calcium, and consequently, the expression of PGE2 synthase/PGF2α synthase ratio 

would favor PGE2 synthesis. The above conditions would favor luteal function. However, it is 

worth pointing out the importance of looking beyond steady states of mRNA encoding these 

enzymes; sometimes regulation may be at the level of protein or even enzyme activity and 

additional work is necessary before rejecting the tested hypothesis.  

 The developmental significance of a regulatory role played by cytosolic calcium 

concentrations in mediating the inhibitory actions of PGF2α is documented by results obtained in 

experiment 3. As reported in previous studies [17], PGF2α reduced LH-stimulated P4 secretion in 

Day-10 cells only. Basal P4 secretion was not affected by the PGF2α -treatment at any of the two 

developmental stages tested. As the working hypothesis predicted, the pharmacological increase in 

[Ca
2+

]i induced by A23187 effectively mimicked the inhibitory effect of PGF2α in Day -10 

steroidogenic cells. Furthermore, as predicted by the working hypothesis, the A23187 treatment also 

inhibited LH-stimulated P4 secretion in Day -4 steroidogenic cells. This inhibitory effect of A23187 

is most likely due to its demonstrated effect in increasing the intracellular concentration of calcium 

ions [27] in these cells and not due to other non-specific effects. This interpretation is also 

supported by the observation that treatment with A23187 had no negative effect on basal P4 

secretion at any of the two developmental stages tested.   

Further support for the significance of a regulatory role played by the increase in [Ca
2+

]i in 

mediating the inhibitory actions of PGF2α is documented by results obtained in experiment 3 where 

the cytoplasmic calcium buffering capacity of the cells was increased by Bapta-AM. At lower 

concentrations (0.1 and 1.0 µmol), the calcium buffering capacity of Bapta-AM was, most likely, at 

values that still allowed a PGF2α -stimulated increase in [Ca
2+

]i; which in turn, preserved the ability 

of PGF2α to inhibit LH-stimulated P4 secretion (Fig. 6).  However, as the calcium buffering 

capacity in the cytoplasm of the steroidogenic cells was increased by increasing the concentration of 

Bapta-AM (10 and 100 µmol), the calcium signaling feature of activating the PGF2α receptors was 

most likely eliminated or at least reduced, and consequently, the ability of PGF2α to inhibit LH-

stimulated P4 secretion was also significantly reduced (Fig. 6). Similar effects of Bapta-AM on 

basal and hormonal-stimulated steroidogenesis have been reported in MA-10 Leydig cells (34). 

Therefore, the results of experiment 3 stress the calcium requirement for PGF2α to inhibit LH-

stimulated P4 secretion in the mid-phase CL and support the reported observation that the lower 

efficacy of PGF2α to inhibit P4 secretion in the early CL is related to the reduced ability of PGF2α 

to increase the cytoplasmic concentration of calcium at this developmental stage [17]. Taken 

together, the results obtained in the A23187 and Bapta-AM experiments, strongly support the 

proposed hypothesis that an attenuation of the luteolytic actions of PGF2α is associated with a 

compromise in the ability of PGF2α to induce a rise in [Ca
2+

]i [27]. Therefore these studies provide 

a strong linkage between the signal transduction utilized by the PGF2α receptor at different 

developmental stages and quantitative aspects of the known intracellular mediator of PGF2α actions 

in the CL, [Ca
2+

]i. In this regard, species differences do exist, as in rat luteal cells the 

antigonadotropic action of PGF2α is not mediated by elevated cytosolic calcium levels [50]. It 

appears that the bovine CL therefore, has the following commonalities with human CL: 1) in both 

species, PGF2α is luteolysin, 2) the luteolytic effect of PGF2α appears only during mid- and late-

luteal phase, and 3) in both, the humans and cows, changes in intracellular calcium appear to 

regulate luteal function ([51] and this study). 
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 In summary, the evidence presented here strongly supports the idea that PKCε, an isozyme 

highly expressed in steroidogenic luteal cells with acquired luteolytic response to PGF2α, has an 

important regulatory role in the ability of PGF2α to inhibit LH-stimulated P4 secretion in vitro at 

this developmental stage. The data presented strongly support the hypothesis that luteal resistance to 

the luteolytic actions of PGF2α is associated with a compromised ability of PGF2α to induce a rise 

in [Ca
2+

]i. If the PGF2α receptor and its associated signal transduction is bypassed with a 

pharmacological agent to increase the [Ca
2+

]i, the LH-stimulated P4 secretion in Day -4 

steroidogenic cells is eliminated, an action that cannot be induced by PGF2α at this developmental 

stage. Conversely, if the increase in [Ca
2+

]i typically induced by PGF2α on Day-10 steroidogenic 

luteal cells is buffered by a pharmacological agent,  then the  ability of PGF2α to inhibit the LH-

stimulated P4 secretion is abrogated. 
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Figure legends 

 

Figure 1. Time-course reduction in PKCε mRNA expression after transfection of luteal 

steroidogenic cells with PKCε specific siRNA. (A) Representative RT-PCR products obtained from 

total RNA using the PKCε and GAPDH primers. The amount of total RNA was adjusted to 200 ng 

per reaction and 40 cycles were used for PKCε; while 28 cycles were used for GAPDH. The size of 

the amplified products for the GAPDH and PKCε were 900 and 500 bp, respectively. PKCε and 

GAPDH mRNA expression after 48, 72, and 96 h of transfection with PKCε specific siRNA are 

shown. Lanes labeled Media, non-specific (Non-sp) siRNA, and Transfection reagent represent 

respective treatments without PKCε specific siRNA treatment. GAPDH was used as the control 

gene to normalize the PKCε mRNA expression. (B) Quantitative analysis of the RT-PCR products 

obtained in four (n = 4) replicates similar to those shown in panel A. Data are the mean mean ± 

SEM of the densitometry measurements for PKCε relative to GAPDH mRNA. Statistical 

comparisons were made between different treatments. Different letters above each SEM represent 

different values (P < 0.05).  

 

Figure 2. Reduction in PKCε protein. (A) Representative Western blot showing the amount of 

PKCε and actin expressed in protein samples prepared from luteal steroidogenic cells after 48, 72, 

and 96 h of transfection with PKCε specific siRNA (lanes 1-3). Lanes labeled 4 - 6, contained 

protein samples from indicated control treatments (media, Non-sp siRNA, and transfection reagent, 

respectively). (B) Semi-quantitative analysis of the densitometry derived from four experiments 

similar to the one shown in panel A. the y-axis shows the ratio of the optical density ratio of PKCε 

to that of its corresponding β-actin. The data are shown as mean ± SEM, and comparisons were 

made between different treatments. Values with different letters denote differences by one-way 

ANOVA followed by Tukey-Kramer honestly significant difference (P < 0.05).  

 

Figure 3. PKCα and PKCβII protein after 96 h transfection of luteal steroidogenic cells with PKCε 

specific siRNA. (A) Representative Western blot showing the amount of PKCα, PKCβII KCε and 

actin detected in protein samples prepared from luteal steroidogenic cells after 96 h of transfection 

with PKCε specific siRNA (lane 1). Lanes labeled 2 - 4, contained protein samples from indicated 

control treatments (media, Non-sp siRNA, and transfection reagent, respectively. B and C) Semi-

quantitative analysis of the densitometry derived from four experiments similar to the one shown in 

panel A for PKCα  (B) and PKCβII (C). The y-axis shows the ratio of the optical density ratio of 

PKC isozyme to that of its corresponding β-actin. The data are shown as mean ± SEM, and 

comparisons were made between different treatments by one-way ANOVA followed by Tukey-

Kramer honestly significant difference.  

 

Figure 4. Effects of PKCε down-regulation on the ability of PGF2α to inhibit the LH-stimulated 

progesterone synthesis/secretion in cultures of steroidogenic luteal cells transfected for 96 h with 

PKCε specific siRNA (filled bars) or with transfection regents (control, open bars). Progesterone 

accumulation was determined in culture media after 4 h of incubation in the following treatments: 

LH (100 ng/ml), PGF2α (1 µg/ml) and a combination of PGF2α and LH. Data are presented as mean 

± SEM of four individual replicates (n = 4 cows). For each treatment group, statistical comparisons 

were made between PKCε down-regulated (PKCε siRNA) and control (not PKCε down-regulated); 

different letters above each SEM denote different values, P < 0.05.  
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Figure 5. Effect of the Ca
2+

 ionophore, A23187, on basal and LH-stimulated progesterone 

synthesis/secretion (ng/ml) in cultured steroidogenic cells collected from Day 4 (panel A) and Day 

10 (panel B) bovine CL. Progesterone accumulated in culture media was determined after 4 h of 

incubation in the following treatments: media alone (Media), LH (100 ng/ml), LH and PGF2α (1000 

ng/ml), or LH and A23187 (0.1, 1, 10, and 100 µmol). As explained in Materials and Methods, 

these treatments also contained 0.1 % of the solvent used for PGF2α and A23187, DMSO. Data are 

presented as the mean ± SEM of four Day 4 and 10 Day 10 individual replicates (n = 4 and 10 cows 

respectively). Statistical comparisons were made across treatments, and means with different letters, 

differ within each panel (P < 0.05). 

 

Figure 6. Effect of the cell-permeable calcium chelator, Bapta-AM, on basal and LH-stimulated 

progesterone synthesis/secretion (ng/ml) in cultured steroidogenic cells collected Day 10 bovine 

CL. Progesterone accumulated in culture media was determined after 4 h of incubation in the 

following treatments: media alone (Media), LH (100 ng/ml), LH and PGF2α (1000 ng/ml), or LH 

and Bapta-AM (0.1, 1, 10, and 100 µmol). As explained in Materials and Methods, these treatments 

also contained 0.1 % of the solvent used for PGF2α and Bapta-AM, DMSO. Data are presented as 

the mean ± SEM of four Day 10 individual replicates (n = 4 CL obtained from 4 cows). Statistical 

comparisons were made across treatments, and means with different letters denote different values, 

P < 0.05.  
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Tables 

 

Table 1. Primer sequence, accession number, product size and annealing temperature 

of investigated genes 
Gene Primers Acc# Size Annealing 

β-Actin F5’GACATCCGCAAGGACCTCTA3’ 

R5’ ACGGAGTACTTGCGCTCAG3’ 

BC102948 100 * 

PGDH F5’GGAAAGCTGGACATCTTGGT3’ 

R5’GCAAATTGCGTTCAGTCTCA3’ 

BC102458 150 60
o
C 

PGES-1 F 5’GAACGACCCAGATGTGGAA3’ 

R5’ATACGGCCCAGGAAGAAGAC3’ 

NM_174443 153 59
o
C 

AKR1B5 F 5’ GACCTTGGGTACCGTCACAT3’ 

R5’TCTTTCTCACTGGGAATCACG3’ 

S54973 150 59
o
C 

PGE2 9- 

Reductase 
F 5’AAGAAATGCAGCCGTGAACT3’ 

R 5’ GCTCCTTCTTCTGGGCTTTT 3’ 

BC102943 155 59
o
C 

COX-2 F5’CATGATGTTCTTTGTTGGCATT3’ 

R 5’ GCGAATTCCAACTTTCCATC3’ 

AF031698 154 60
o
C 

••••     Actin was amplified under the same conditions as gene of interest 
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