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Abstract

Large-scale (1:3000) color aerial images of a population of eastern hemlock (Tsuga canadensis L.) were collected in the early spring of

1997, 1998, and 1999. An automated spatial segmentation procedure was developed to identify and measure individual population objects or

blobs within the forest population. To ensure the comparability of multiyear segmentation maps, an automated blob reconciliation procedure

was also developed to make certain that no hemlock pixels were assigned to different blobs in different years. The automated segmentation

and reconciliation procedures were applied to a population of naturally occurring hemlock. Following spatial segmentation, a large majority

of hemlock blobs (~66–71%) were found to be closely associated with ground referenced, manually delineated individual hemlock crowns.

The remaining blobs consisted of spatially distinct parts of a crown or closely clumped multiple crowns. Similar overall classification

accuracies (~63–72%) were found following the reconciliation of multitemporal image pairs. The development of these spatially explicit

multitemporal population data sets should prove useful to further investigations of the dynamics of and environmental influence on plant

populations.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Remote sensing provides ecologists a powerful tool to

rapidly obtain spatially explicit data on the vegetation of a

large area. At present, high spatial resolution imagery

provided by aircraft-based photographic systems appears

to provide data at a scale most feasible for study of

vegetation change at the population level (Erikson, 2003;

Gougeon, 1995; Niemann, 1995; Wulder et al., 2000)

although recently launched space-based platforms (i.e.,

IKONOS and QuickBird) are approaching the resolution

required to discern individuals (Kramer, 2002). Given the
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potential size of remotely sensed data sets and the extensive

time requirements of ground-referenced, manually

delineated crown segmentation methods, there exists a basic

need to develop an automated segmentation procedure to

delineate the individual components of a population.

There have been a number of efforts to develop an

automated procedure to segment individual crowns within a

tree population. For different forested imagery, the inter-

action between forest canopy and incident sunlight can

result in a variety of different spectral and spatial character-

istics to assist in the separation of individual tree crowns.

These characteristics vary considerably depending on site,

sensor type, image scale, and timing of image collection.

Local minima reflectance values, due to shadows between

individual crowns (Culvenor, 2002; Gougeon, 1995), local

maxima reflectance values representing the tops of upper
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canopy trees (Culvenor, 2002; Pinz, 1991; Pouliot et al.,

2002), crown size (Lahav-Ginott et al., 2001), and crown

shape characteristics (Pollock, 1998) have all been used to

automatically segment individual tree crowns. Most often, a

multistep procedure utilizing more than one crown attribute

has proven most effective (Brandtberg & Walter, 1998;

Culvenor, 2002; Gougeon, 1995; Pinz, 1991; Pollock, 1998;

Pouliot et al., 2002).

Phenological differences between hemlock (Tsuga can-

adensis L.) and the neighboring deciduous trees have been

used successfully to spectrally segment evergreen and

deciduous ground covers (Lamar, 2003). The leaf-off nature

of this imagery also allowed us to census a significant

portion of the lower canopy segment of the population

within the study site. The presence of both sunlit and shaded

hemlock crowns, however, resulted in no consistent

recognizable radiometric patterns being observed within

individual crowns (i.e., local spectral maxima associated

with tree apexes).

While there has been some success in the automated

segmentation of individual trees from aerial imagery, given

the resolution and angular mobility limitations of remote

sensing instruments, census data collected from airborne

sensors will differ from traditional sampling methods for

the foreseeable future. The challenge to ecologists is how

to adapt the traditional methods of description and

classification to be compatible with the nature of remotely

sensed data (Graetz, 1990). The basic unit traditionally

used to describe populations has been the individual.

Although the genetic identity of this description has many

positives, it also presents some difficulties. The clonal

nature of many plants blurs the definition of an individual

between the whole plant genet and the clonally produced

yet potentially independent ramet. Even in nonclonal

species, the extensive and complex graft union formed

between the roots of different individuals in a number of

forest tree species and the subsequent role of these grafts

in the translocation of resources suggest a reduced role for

individualism with regard to intraspecific competition

(Bormann & Graham, 1959). Graham (1959) lists 19

genera and 56 species of forest trees in which natural root

grafting has been observed, including eastern hemlock.

Still, other trees spread from their base after boles are cut

or broken, resulting in multiple crown stems from one

genetic individual.

The modular, as opposed to unitary, construction of most

plants has long been recognized (Harper, 1976). Using this

modular approach, the fundamental unit of a plant pop-

ulation may be regarded as any repeating unit of con-

struction, such as a tree branch or branches (Huenneke &

Marks, 1987; McGraw, 1989) or other repeating spatial

units (Guardia et al., 2000).

Repeated measurements of the same features over time

allow for the investigation of the dynamics of an area’s

vegetation. bPostclassification comparisonQ change detec-

tion techniques have been used at a pixel level to investigate
the dynamics of wetlands (Jenson et al., 1995), large-scale

deforestation (Malingreau & Tucker, 1988), and forest

succession (Hall et al., 1991).

Tree and shrub population dynamics can be investigated

through repeated measurements of individuals (Enright &

Ogden, 1979; Hartshorn, 1975; Martinez-Ramos et al.,

1989; Usher, 1972) or parts of individuals (Huenneke &

Marks, 1987; McGraw, 1989) within a population over time.

bPostclassification comparisonQ change detection of spatial

objects within a population requires a reconciliation of these

objects, segmented at different census periods, so that the

objects are unique and comparable between census periods.

In this paper, we present a new automated methodology

to extract a population data set of hemlock objects from

remotely sensed imagery collected in 1997, 1998, and 1999.

Our procedure relies on global and local shape and size

features to complete spatial segmentation.

Spatial segmentation of hemlock was applied independ-

ently to each temporal image. Due to changes in hemlock

shapes between years, not all segmentation lines were

identical between years. Some hemlock areas were assigned

to different objects in different years. Following spatial

segmentation, an automated object reconciliation procedure

was developed to resolve classification differences and

reassign bcross-identifiedQ areas to the same hemlock object

for comparable time periods, thus ensuring the meaningful

comparison of multitemporal data sets. Reconciliation was

performed on paired hemlock image data from 1997–1998

and 1998–1999.

The results from the automated segmentation and recon-

ciliation procedures were compared to a ground-referenced

manual crown survey map of the same population.
2. Methods

2.1. Study area

Our study area is located in the Limberlost-White Oak

Canyon area of Shenandoah National Park (38834VN
78822V W). This site is located in an upper elevation (951

m) mixed hardwood/hemlock forest. Hemlock is a long-

lived, shade tolerant evergreen tree found in many low

disturbance eastern United States (US) forests. Established

populations usually include a large bank of bsaplingsQ, small

individuals that may be suppressed beneath a canopy of

hemlock or hardwoods for hundreds of years and remain in

good condition (Godman & Lancaster, 1990). Like all

hemlocks within Shenandoah, the Limberlost-White Oak

Canyon population has been adversely impacted in recent

years by the presence of the hemlock woolly adelgid

(Adelges tsugae) whose occurrence was first reported in

the park in 1988. This adelgid, believed to inject a toxic

saliva into the hemlocks while feeding (Souto et al., 1996),

currently infests hemlocks in many eastern US states.

Unlike hemlocks in other park locations, most trees within
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the study site had only suffered mild to moderate defoliation

at the time of aerial sampling. Within the study area, a 3-ha

(100�300 m) study plot and an adjoining 0.5-ha (50�100

m) training plot were located. All parameter estimates used

in the spatial segmentation and reconciliation procedures

were developed using data from the training plot and then

applied to the study plot for final analysis.

2.2. Image collection, preprocessing, and ground data

collection

Large-scale (1:3000) color aerial images of the study area

were collected on March 27, 1997, April 13, 1998, and

March 31,1999, using a calibrated Leica/Wild Heerbrugg

RC-30 mapping camera with a 300-mm focal length lens.

The imagery was acquired before the emergence of new

foliage for the deciduous forest component. The color

images were scanned at 600 dpi, using an Agfa Dual Scan

scanner to produce high resolution (~13 cm/pixel) digital

images of the forested study site (Fig. 1). To facilitate

comparisons between multitemporal images, image to image

geometric registration was performed. Registration using

shared primary branch bifurcation points as control points

(Herwitz et al., 1998), second-order mapping polynomials

and cubic convolution resampling resulted in a root-mean-

square (RMS) error of 2.8 pixels (~36 cm) for the 1998/

1999 image pair and an RMS error of 2.6 pixels (~34 cm)

for the 1997/1998 image pair.

The diameters at breast height (dbh, breast height=1.3 m)

of all hemlock trees (dbh z5 cm) within the study and

training plots were measured in the spring of 1998, using

traditional field methods.

2.3. Manual crown segmentation

Manual delineation of irregularly shaped tree crowns on

large-scale imagery is usually not free of error. Measure-

ments of isolated tree crowns using spectral segmentation

procedures have been found to produce more accurate

estimates of size than manual delineation (Lahav-Ginott et
Fig. 1. Section of study site from March 1997 image.
al., 2001). For this reason, initial map preparation involved

spectrally separating the evergreen vegetation of the study

site from other ground covers. Spectral segmentation used a

maximum likelihood classification algorithm and a global

fused class decision-making process that applied the

summarized decisions of local class statistics derived from

all 3 years of radiometrically normalized imagery to each

year’s image (Lamar, 2003).

The boundaries between individual hemlock crowns and

the boundaries between hemlock crowns and other types of

evergreen vegetation were manually delineated in the field

from these spectrally segmented vegetation maps. Manual

delineation was aided by the use of multiple years of aerial

imagery and multiple images from different viewing angles

each year. The manual crown survey map was produced in

the spring of 1998 from the 1998 images. All comparisons

of the automated aerial censuses in this study were thus

made with respect to this 1998 manual crown survey map. A

full description of the hemlock population within the study

area based both on ground-collected and ground-referenced

aerial-collected data has been previously described (Lamar,

2003).

2.4. Automated spatial segmentation

Our automated spatial segmentation procedure was

applied independently to each of the multitemporal spec-

trally segmented vegetation maps of the study site. The

objective of this procedure was to divide the hemlock

component of the aerial imagery into distinct population

features based on shape and size. Spatial segmentation was a

five-step process including shadow thresholding, Euclidean

distance map (EDM) construction and smoothing, water-

shed segmentation, and small blob joining.

2.4.1. Shadow thresholding

Shadows can both assist and hinder crown segmentation

efforts (Brandtberg & Walter, 1998; Gougeon, 1995;

Pollock, 1998). On one hand, the intercrown shadows, by

providing a distinct edge around the perimeter of an

individual tree crown, can greatly assist efforts to delineate

that crown from its adjacent neighbors. Conversely,

shadows can hide valuable information about the true

nature of a crown’s shape and size. A single tree, when

intercepted by intracrown shadows, can be mistaken for

several separate trees by both automated and manual

segmentation procedures.

To investigate the nature of the shading within the study

area, all inter and intracrown shadows within the training

plot were manually identified and mapped during the

preparation of the manual crown survey map. The size

differences between inter and intracrown shadows were

examined using a Wilcoxon rank sum test (Wilcoxon,

1945). To distinguish inter and intracrown shadows for

automated segmentation, an optimal threshold shadow size

was determined through a systematic trial of a range of



Fig. 3. Effects of EDM smoothing. (a) Original EDM and (b) smoothed

EDM.
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shadow sizes. The size that produced the maximum overall

accuracy following watershed segmentation (Soille, 2003)

was defined as the optimal threshold size. All shadows

below this threshold were filled in as hemlock before

automated watershed segmentation of the study plot. These

shadows were then added back to the image prior to further

segmentation, reconciliation, and analysis.

For multitemporal comparisons, the presence of shadows

presents another challenge. At the pixel level, the transition

between hemlock and other nonshadow ground covers from

one sampling time to another is considered an actual

change. The transition between hemlock and shadow,

however, represents an unknown. The shadow could be

masking a hemlock pixel, in which case no actual change

has occurred, or the shadow could be masking an actual

change between hemlock and another ground cover. Due to

the level of uncertainty for these transitions, all pixels within

each image pair exhibiting this transition were eliminated as

hemlock prior to spatial segmentation. This had the effect of

adding 1997 and 1998 shadows to both images within the

1997–1998 image pair. Likewise, 1998 and 1999 shadows

were added to both images of the 1998–1999 image pair.

Studies have shown a significant statistical relationship

between ground and aerial measurements of tree size from

single time period images (Aldred & Sayn-Wittgenstein,

1972; Hagan & Smith, 1986; Minor, 1951). The addition of

another year of shadows to each image within an image pair,

however, could potentially increase the masking of the aerial

crown measurements. The relationship between ground

measurements of size (dbh) and aerial measures of size

(crown area) for the 1998 hemlock crowns within the 1997–

1998 and 1998–1999 image pairs was investigated using

correlation analysis.

2.4.2. EDM construction and Gaussian smoothing

EDMs were constructed by performing a distance trans-

form on the spectrally classified binary image, assigning a
Fig. 2. Hemlock clump following Euclidean distance mapping, (a) 3-D

view with arrows pointing to false maxima and (b) 2-D view.
brightness value to each hemlock pixel corresponding to the

pixel’s Euclidean distance from its nearest boundary (see

Russ (1995) for further description of this procedure). Local

maxima on the EDM represent the center or peak of a

hemlock clump; local minima represent edge pixels (Fig. 2).

Effective spatial division of an EDM using the watershed

segmentation method depends on the orderly relation of

gray scale pixel values. Typically, this pixel relationship is

the result of an EDM constructed from convex or mostly

convex shapes. Less convex shapes and local boundary

irregularities lead to a surplus of local maxima and

oversegmentation.

To minimize oversegmentation, a Gaussian filter with a

standard deviation (r) of 0.65 pixels was applied to the
Fig. 4. Effect of varying the number of Gaussian smoothing iterations on

overall accuracy, training plot, 1998 data from 1998–1997 and 1998–1999

image pairs.



Fig. 5. Reconciliation process. (a) Segmented (but not reconciled) blobs

from 1997 and 1998 image pair, (b) overlaid images with pixels classified

as joint-year (grid lines), single-year (1997) only (gray), or single-year

(1998) only (black). (c) Areas not needing reconciliation are passed to

reconciliation base maps as Blobs A and B. Areas to be considered for

reconciliation grouped as patch (black) on both 1997 and 1998 image (d)

reconciled patch assigned to Blob A (with which the greatest connectivity

was shared).
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EDM prior to watershed segmentation to remove excess

local maxima (Fig. 3). To minimize the possible effects of

neighbors on the smoothing of a feature, the Gaussian filter

was truncated as a 5�5 kernel. The degree of smoothing

needed to achieve the highest overall accuracy was

investigated through a systematic trial of smoothing

iterations within the training site (Fig. 4). The number of

smoothing iterations, which resulted in highest overall

hemlock classification accuracy in the training site, was

then applied to the study site data for final analysis.

2.4.3. Watershed segmentation

Beucher and Lantuejoul (1979) introduced the idea that

by viewing the intensity of any gray-scale image as

elevation and simulating runoff, it is possible to decompose

an image into watershed regions. In our study, watershed

analysis was performed using the public domain NIH

ImageJ program (U.S. National Institute of Health, 2003)

and based on the algorithm described by Soille (2003).

Intuitively, the concept of watershed can be explained in

terms of flooding. The EDM is inverted so that local

maxima are now local minima. Starting at the minima, water

progressively floods the catchment basins of the image. At

the places where the waters coming from two different

minimums would merge, a dam is raised. Following the

flooding procedure, each minimum and associated catch-

ment basin is segmented by dams from adjacent catchment

basins. Hereafter, we shall refer to these basins consisting of

one local minimum and a support region of significantly

darker pixels than its neighborhood as blobs (Lindeberg,

1994).

2.4.4. Small blob joining

Even with EDM smoothing, the watershed method

produced excessive hemlock segmentation due to the

presence of large irregular crown branches and intracrown

shadows. To improve the overall classification accuracy, a

small blob joining procedure was applied following water-

shed segmentation. This procedure identified an optimal

small blob size and joined each blob below this size with its

contiguous neighbor with whom it shared the largest

common boundary. The optimal small blob joining size

was determined from the training data through a systematic

trial of different blob sizes to identify the joining size where

overall accuracy was maximized.

2.5. Automated blob reconciliation

The automated spatial segmentation procedure was used

to segment blobs within the 1997–1998 and 1998–1999

image pairs. Because of variations in viewing geometry, as

well as real changes in the hemlock canopy, not all

segmentation lines were identical in the different images

of an image pair. Some hemlock areas were assigned to

different blobs in different years. This condition makes no

biological sense in as much as hemlock branches cannot
switch trees, and it complicates the tracking of unique blobs

over time. An automated procedure, which we term blob

reconciliation, was developed to identify areas assigned to

different blobs in different years of an image pair, resolve

these classification differences, and reassign bcross-identi-
fiedQ areas to the same blob for comparable time periods,

thus ensuring the meaningful comparison of multitemporal

data sets.

2.5.1. Patch identification

As an initial step of reconciliation, the image pair to be

reconciled (images at time t and t+1) were overlaid, and

areas of connected hemlock pixels were classified according

to their classification on both images as (1) joint-year areas,

identified as hemlock at both t and t+1 or (2) single-year

areas, identified as hemlock at either but not both time t and

t+1 (Fig. 5a and b). Joint-year areas assigned to different



Fig. 6. Reconciliation decision making.
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blobs at time t and t+1 were differentiated from joint-year

areas that were assigned to the same blobs at both times. No

crown reconciliation was necessary for these later areas and

also for any connected single-year area with which they

shared a greatest common boundary. Likewise, no reconci-

liation was needed for single-year areas not connected to

any joint-year areas. These areas, where reconciliation was

not needed, were added unaltered to reconciliation base

maps t and t+1 (Fig. 5c). These nonreconciled areas

represented the large majority of all pixels within all image

pairs (68.6–72.2%). Areas to be considered for reconcilia-

tion were grouped into spatially connected regions termed

patches. Each patch was comprised of one cross-identified

joint-year area (identified, for example, with Blob A at time

t and with Blob B at time t+1) and any single-year areas

with which it shared a greatest common connected

boundary. For example, a patch from the 1997 image

consisted of a joint-year area and all single-year (1997 only)

areas with which it shared a greatest common connected

boundary. The corresponding patch from the 1998 image

consisted of the same joint-year area and all single year

(1998 only) areas with which it shared a greatest common

connected boundary.

2.5.2. Patch–blob connectivity

Reconciliation decisions about these patches were based

on the relative strength of the connection or connectivity

between patch and the patch’s neighboring blobs on both

images of an image-pair. For a patch assigned to Blob A at

time t and Blob B at time t+1, this meant assessing the patch

connectivity to both neighboring blobs at both times of an

image pair.

The connectivity between patch (i) and neighboring blob

(A) was measured on both images of an image pair as the

weighted ratio of common boundary region and patch size

such that:

Connectivity i;Að Þ ¼ CBRi;A; tð Þ þ CBRi;A; tþ1ð Þ
� �
.

Pi; tð ÞþPi; tþ1ð Þ

� �2

ð1Þ

where CBRi,A,(t) is the common boundary region of patch

(i) and neighboring blob (A) on time t image, CBRi,A,(t+1)

is the common boundary region of patch (i) and neighbor-

ing blob (A) on time t+1 image, Pi,(t) is the size of patch (i)

on time t image, and Pi,(t+1) is the size of patch (i) on time

t+1 image.

The CBR between a considered patch and its neighboring

blob was identified from a scanning operation as the sum of

all patch pixels found within a moving 7�7 window

centered on the edge pixels of the neighboring blob.

Viewing geometry differences between images can result

in bpseudochangesQ in the hemlock canopy that cause the

relative positions of patches and neighboring blobs to

appear to be slightly off-set between years. Real changes

in hemlock canopy shape between images can also change
the relationship between patch and neighboring blobs.

These real or pseudochanges could create a situation where

a patch may be strongly associated with a neighboring blob

on one image but appear to be slightly separated from the

same neighboring blob on the second of an image pair. The

7�7 window size used in the boundary scan permitted a

patch within close proximity but not connected to a

neighboring blob at one image time to be considered for

possible inclusion with that blob during reconciliation.

The neighboring blob sharing the maximum connectivity

with a patch was termed the patch’s greatest common

neighboring blob.

2.5.3. Reconciliation decision making

Following calculations of each patch’s connectivity, the

patch was subjected to a decision-making procedure (Fig. 6).

From a systematic trial of the training data, a threshold

connectivity value (W) was obtained that maximized the

overall classification accuracy of the training site hemlock.

If the patch’s greatest connectivity bW, then the patch was

deemed to lack a significant connection with any neighbor-

ing blobs and was assigned as a new and unique blob on

base maps t and t+1. If the patch’s greatest connectivity zW,

then the patch was added on base map t and t+1 as a part of

its greatest common neighboring blob (Figs. 5d and 7).

The automated blob reconciliation procedure was used to

reconcile segmented hemlock blobs in each image of the

1997–1998 and 1998–1999 image pairs.

2.6. Blob threshold size

The manual crown survey found that many of the

smallest evergreen blobs within the aerial imagery were

separated at such a distance from all identified hemlock

crowns that they could not be linked with certainty to any

one crown. These smallest blobs represented isolated

hemlock branches cut off from the main crown by shadows

or other ground covers, crowns belonging to hemlocks with

a dbh of b5 cm, or branches of mountain laurel (Kalmia

latifolia) whose canopies, because of internal shading,

tended to be dissected into small discontinuous patches.

Because of the uncertain identity and relative insignificance



Fig. 7. Reconciliation procedure considers patch i (gray) that has been segmented into different blobs for 1997 and 1998. The difference in blob assignment

between image years was due to the change in size and shape of blob B in 1998 due to an ice storm. Connectivity between patch and blobs was calculated

(using Eq. (1)). Blob Awas found to be the patch’s greatest common neighbor. In as much as the patch’s greatest connectivity (with Blob A) zW, the patch was

assigned to Blob A on both 1997 and 1998 maps (see Fig. 5d).
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of these smallest blobs, a blob threshold size was developed.

Only blobs above this threshold were considered for further

comparison and description. The blob threshold was

selected based on the smallest crown size predicted from

the minimum ground-based dbh measurement and the least

squares regression of crown size and dbh.

2.7. Accuracy assessment—automated segmentation and

reconciliation

Unlike pixel-based accuracy assessments that have

achieved at least some level of standardization over time

(Congalton, 1991), the accuracy assessments of object-

based segmentation efforts have generally been quite limited

and varied. The type of assessment performed is often

dependent on the objectives of the study and the type of

ground-referenced data available for comparison. One type

of assessment, which we term whole plot accuracy,

compares the total number of manually delineated crowns

or counted stems with the total number of automatically

delineated blobs within a designated area. Whole plot

assessments are often used when the only available

description of the study area may be a measure or estimate

of tree density. While useful for some stand level

descriptions and monitoring activities, whole plot assess-

ments generally provide a poor measure of btrueQ accuracy
due to the canceling actions of individual tree errors of

omission and commission.
Methodologies assessing the 1:1 correspondence of

bindividualsQ (in our case, automated blobs and manually

delineated crowns) provide a much more useful measure of

accuracy (Leckie & Gougeon, 1998), particularly for

demographic studies. Unlike pixel-based or count-based

accuracy assessments, object-based assessments face added

difficulties, having to make comparisons between features

that lack uniform size and positional equivalency on

comparison images. Given these differences, one must

initially define when a crown and a blob have achieved

1:1 correspondence. In this study, we defined 1:1 corre-

spondence as occurring when the overlap area between a

manually delineated crown and an automated blob includes

z50% of both features’ total size.

Using this definition, several descriptive measures of the

blob–crown relationship can be obtained (Fig. 8). Two

common assessments of pixel-based classifications are

user’s and producer’s accuracy. These assessments can be

adapted to object-based classifications. User’s accuracy,

indicative of the probability that an automated blob achieves

1:1 correspondence with a manually delineated crown, can

be defined such that:

UserVs accuracy

¼ # of 1 : 1 blob:crown correspondences

Total # blobs obtained from automated segmentation

ð2Þ



Fig. 8. Accuracy assessment using 1:1 correspondence. (a) Overlays

automated blobs on manual crowns. Arrows point to crowns, which contain

z50% of overlaid blob. Producer’s accuracy=(1) 1:1 crown/blob corre-

spondences 3 total crowns=33%. (b) Overlays manual crowns on automated

blobs. Arrows point to blobs, which contain z50% of overlaid crown.

User’s accuracy=(1) 1:1 blob/crown correspondences/3 total blobs=33%.

Overall accuracy=(2) 1:1 blob:crown and 1:1 crown:blob correspondences

and crowns=33%. Interestingly and, perhaps misleadingly, whole plot

accuracy for this example is 100% (3 crowns/3 blobs).

Fig. 9. Effect of varying threshold shadow size on overall accuracy, training

plot, 1998 data from 1998–1997 image pair and 1998–1999 image pair.

Fig. 10. Effect of varying small blob joining size on overall accuracy,

training plot, 1998 data from 1998–1997 and 1998–1999 image pairs.

W.R. Lamar et al. / Remote Sensing of Environment 94 (2005) 133–143140
Producer’s accuracy, which is a measure of the proba-

bility that a manually delineated crown achieves 1:1

correspondence with an automated blob, is defined as:

ProducerVs accuracy

¼ # 1 : 1 crown:blob correspondences

Total # crowns obtained from manual segmentation

ð3Þ

An assessment of the crown–blob relationship using

either user’s or producer’s accuracy alone can be misleading

as errors of overaggregation and overdissection result in

different blob–crown and crown–blob correspondences. For

example, three manually delineated crowns aggregated into

one blob results in one 3:1 crown–blob correspondence from

the user’s perspective but three 0:1 crown–blob correspond-

ences from the producer’s perspective. Is it more helpful to

consider this situation as one crown overaggregation error or
three blob overdissection errors? Congalton (1991) suggests

that a measure of overall accuracy has advantages over

either user’s or producer’s accuracy. Overall accuracy

permits one to more fully understand the relationship

between manually delineated crowns and automated blobs

by describing the relationship from both perspectives. This

accuracy assessment, the probability that both a manually

delineated crown and automated blob have 1:1 correspond-

ence with each other, is defined as:

Overall accuracy

¼ # of 1 : 1 blob:crown þ # of 1 : 1 crown:blob correspondences

Total blobsþ Total crowns

ð4Þ
In this study, segmentation and reconciliation parameters

(threshold shadow size, blob joining size, and threshold

connectivity) were determined from empirical trials by

selecting values that maximized overall accuracy in the

training data. Overall accuracy is also calculated to describe

the effectiveness of the segmentation and reconciliation

procedures on the 1997–1998 and 1998–1999 image pairs

in comparison to the 1998 manual crown survey map.
3. Results

A good correlation (r=0.759) was found between

measurements of 1998 hemlock size in the air (crown area)



Table 2

Accuracy assessment—automated blob segmentation procedure (1998 data

for 1998–1999 image pair) compared to 1998 manual crown survey map

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial accuracy (crowns–blob) 2 11 62 339 90

Ground accuracy (blobs–crown) 0 3 55 351 126

Overall accuracy=690/1039=66.4%.

Fig. 11. Effect of varying threshold connectivity values on overall accuracy,

training plot, 1998 data from 1998–1997 and 1998–1999 image pairs.
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on both 1997–1998 and 1998–1999 image pairs and on the

ground (dbh) despite the elimination of all pixels exhibiting

hemlock–shadow transitions within each image pair map.

This correlation was similar to the correlation (r=0.776)

found between the same two size measures on the 1998

imagery without shadows added (Lamar, 2003).

The regression of crown area on dbh produced a

regression equation of:

Crown Area in pixelsð Þ ¼ 37:6585þ 28:0415 dbh ð7Þ

Substituting the minimum ground sampling size (dbh) of 5

cm into the regression equation resulted in a blob threshold

size of 178 pixels (diameter ~2 m). Contiguous hemlock

patches below this size, many of which could not be

accurately traced to any single hemlock crown, were

considered noise and eliminated from further consideration.

The size of intra and intersize shadows, as identified in the

training plot, differed significantly. Intracrown shadows

were found to be significantly smaller than intercrown

shadows for 1998 hemlocks on both the 1997–1998 and

1998–1999 image pairs (Wilcoxon rank sum test, pb0.0001

for both pairs). The results of a systematic trial of threshold

shadow sizes showed overall classification accuracy to

initially improve as the threshold shadow size was increased

(Fig. 9). As small intracrown shadows were filled, the

number of automated blob overdissection errors (a blob

comprised of part [b50%] of a crown) decreased. As

threshold shadow size continued to increase, however,

overall accuracy began to decrease with the closure of

intercrown shadows. The closure of these shadows caused an

increase in the number of blob overaggregation errors (a blob

comprised of multiple crowns.) Optimal threshold shadow
Table 1

Accuracy assessment—automated blob segmentation procedure (1998 data

for 1997–1998 image pair) compared to 1998 manual crown survey map

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial accuracy (crowns–blob) 0 15 61 340 59

Ground accuracy (blobs–crown) 0 1 41 366 117

Overall accuracy=706/1000=70.6%.
size was the size that minimized both types of segmentation

problems resulting in the highest overall classification

accuracy for hemlocks within the training plot. This optimal

size was found to be 40 pixels (diameter=90 cm) for 1997–

1998 data and 55 pixels (diameter ~1 m) for 1998–1999 data.

The pattern of balancing errors of blob (and crown)

overaggregation and overdissection was also found in sys-

tematic trials of different small blob joining sizes (Fig. 10)

and threshold connectivity values (Fig. 11) within the

training plot. As blob joining size and threshold connectiv-

ity increased, blob overdissection decreased. As blob

joining size and threshold connectivity continued to

increase, however, errors of blob overaggregation began to

increase. A balancing of these errors resulted in highest

overall classification accuracy. For small blob joining, this

size was found to be 400 pixels (diameter=2.87 m). All

smaller hemlock blobs were joined to their contiguous

neighbor, if present, with whom they shared the largest

common boundary. For threshold connectivity, a value of

0.00015 produced the highest overall accuracy. Patches with

maximum connectivity values smaller than this threshold

were added to the reconciliation base map as new and

unique blobs.

The accuracy of the automated segmentation procedure

was compared to the 1998 manual crown survey map. Two

automated maps from 1998, one associated with the 1997–

1998 image pair and another with the 1998–1999 image

pair, were compared to the survey map. The difference

between these two 1998 maps was the inclusion of 1997

shadows with the 1997–1998 image pair and 1999 shadows

with the 1998–1999 image pair. Findings show that 1998

automated blobs and 1998 manually delineated crowns had

70.6% 1:1 correspondence in the 1998–1997 image pair and

66.4% 1:1 correspondence in the 1998–1999 image pair

(Tables 1 and 2).

Assessing the accuracy of the automated reconciliation

procedure in comparison to the 1998 manual crown survey

map showed 1998 manually delineated crowns and 1998
Table 3

Accuracy assessment—automated blob reconciliation procedure (1998 data

for 1997–1998 image pair) compared to 1998 manual crown survey map

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial accuracy (crowns–blob) 0 8 64 355 69

Ground accuracy (blobs–crown) 0 15 61 340 59

Overall accuracy=695/971=71.6%.



Table 4

Accuracy assessment—automated blob reconciliation procedure (1998 data

for 1998–1999 image pair) compared to 1998 manual crown survey map

Correspondence

4:1 3:1 2:1 1:1 0:1

Aerial accuracy (crown–blob) 2 8 52 357 147

Ground accuracy (blob–crown) 2 14 73 339 107

Overall accuracy=696/1101=63.2%.
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reconciled blobs had 71.6% 1:1 correspondence for the

1998–1997 image pair and 63.2% 1:1 correspondence for

the 1998–1999 image pair (Tables 3 and 4).
4. Discussion

The segmentation of a remotely sensed tree population

into individual crowns presents a considerable challenge.

While the results of this study are compatible with other

studies completed in mature natural forest stands (Leckie &

Gougeon, 1998), approximately 1/3 of the hemlock blobs

segmented in the automated procedures and hemlock crowns

from the manual crown survey map did not achieve 1:1

correspondence. Numerous problems confront the spatial

segmentation of individual crowns. Forked branches or

crowns dissected by hardwood branches and shadows cause

a spatial separation between crown segments that often leads

to the overdissection of an individual crown into multiple

blobs. Conversely, the lack of spatial separation between

neighboring tree crowns can lead to the overaggregation of

several individual crowns into one blob. The architecture of

hemlock branching, particularly the branching of individuals

in the lower canopy, accentuated these segmentation prob-

lems, with the wide spreading and quite flexible hemlock

branches often becoming intertwined with neighboring

crowns. For our multiple canopy level imagery, adjacent

neighbors, if occupying different levels of the canopy, do not

have to be in direct physical contact with each other to

appear to be overlapping in the aerial images. Interestingly,

despite the segmentation difficulties illustrated by our 1:1

correspondence assessment, whole plot accuracy levels were

quite high for the segmentation procedure (90.5–94.2%) and

reconciliation procedure (94.5–95.8%) applied to both

1997–1998 and 1998–1999 image pairs. These high accu-

racy figures seem to highlight both the value of the

automated procedures for some types of monitoring sit-

uations and the need to clearly describe how the accuracy of

any segmentation procedure was assessed.

Previous postclassification change detection studies have

encountered problems due to the compounding of classi-

fication errors for the multitemporal imagery (Pilon et al.,

1988). While pixel-based errors in this study may be subject

to similar error compounding, its impact is lessened by the

high overall accuracy (N92%) of spectral classification

(Lamar, 2003). The accuracy of multitemporal object-based

classification can also be negatively affected by the
compounding of segmentation errors from both multi-

temporal images into each multitemporal image. The

challenge for reconciliation is to determine which contra-

dictory segmentation lines within multitemporal image pairs

should be included to maximize overall classification

accuracy. We adopted a best fit approach towards this

challenge by measuring the connectivity of reconcilable

patches from the perspective of both multitemporal images.

Reconciliation accuracy also benefits by considering a

patch’s spectral classification history (joint or single-year

pixels). The result is that overall classification accuracy for

both image pairs following reconciliation is only slightly

different than accuracy prior to reconciliation (+1.0% and

�3.2% for 1998 maps from 1997–1998 and 1998–1999

image pairs).

In this study, we presented both an automated method-

ology for extracting a population data set from remotely

sensing imagery and a description of the relationship

between blobs viewed from the air and individual tree

crowns. Each hemlock blob consists of a distinct portion of

hemlock crown canopy segmented from its neighbors on the

basis of size, shape, and connectivity. Besides their

described quantitative relationship, blobs classified from

aerial imagery and individual trees censused on the ground

share many other similarities. Like an individual, the fate of

a blob can be followed over time; both blobs and individuals

can be born, grow, regress, or die over time. In the case of

blobs, bbirthQ is not the product of recent germination as is

the case with individuals. Rather, a bbirthQ into aerial view is

typically the emergence of a previously suppressed individ-

ual(s) into the canopy as the result of a canopy disturbance.

Importantly, from an ecological perspective, both blobs and

individuals can influence their surrounding environments

and compete for resources with their neighbors. The

development of a multitemporal data set allows for the

following of unique blobs over time. From such a data set,

the parameters needed for demographic population model-

ing can be extracted and a population’s dynamics and

influences over time investigated. The spatially explicit

nature of this data set permits the incorporation of environ-

mental variables, such as topography, soils, and climate into

the demographic modeling.

Spatial resolution advances in space-based, remote

sensing devices will result in future subcontinental and

continental scale data sets that can be bminedQ for

demographic information on trees, shrubs, and other plants

of interest. Therefore, explicit considerations of the relation-

ship between bindividualsQ (i.e., blobs) as seen from above

and true individuals in the global population of a species

will become important. The future availability of huge,

spatially explicit, remotely sensed, population data sets

should assist investigations within a number of diverse areas

of study, such as rare plant conservation, intraspecific plant

interactions, and the effects of spatial and temporal environ-

mental variability including global climate change effects on

plant dynamics.
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